

# Topic Modeling for Discovering Drug-related Adverse Events from Social Media

Mengjun Xie (Ph.D.)<sup>1</sup>, Jiang Bian (Ph.D.)<sup>2</sup>, and Umit Topaloglu (Ph.D.)<sup>2</sup> <sup>1</sup>University of Arkansas at Little Rock, <sup>2</sup>University of Arkansas for Medical Sciences

## Introduction

Current self-reports mechanism is slow and AEs it detects may be incomplete.

Goal: discover adverse events (AEs) of post-market or investigational drugs. > Why Matters: Drug-related adverse events pose substantial risks to patients and > Approach: A data-driven approach to early detection of AEs through mining Tweeter messages. > Intuition: From such a Tweeter message "this warm weather + tamoxifen hot flushes is a nightmare!", we can infer a possible drug use (tamoxifen) and side effect (hot flushes).

# Method

> The process of discovering AEs from tweets has two subprocesses: 1) identifying the users of the drug of interest, and 2) finding possible side effects attributed to the use of the drug. > Both subprocesses involve building and training classification models based on features extracted from the users' Twitter messages (tweets). > In this work, we use a topic model based method to extract features while in the previous work the features are predefined.

 $\succ$  The full process consists of four steps, illustrated in the figure blow.



### <u>Step 1</u>:

Raw data: over two billion tweets (from 5/2009 to 10/2010).

> We used 15 Amazon EC2 high-memory double extra large instances (13 EC2 compute units, 34.2 GB memory) to parallelize Lucene indexing of tweets, which took 2 days to finish.

The size of the Lucene indexes is 896 GB.

# References

[1] J. Bian, U. Topaloglu and F. Yu. Towards large-scale twitter mining for drug-related adverse events. In Proceedings of ACM SHB 2012. [2] M. Blei D., Ng A. Y. and Jordan M. I. Latent dirichlet allocation. J. Mach. Learn. Res., 3:993–1022, March 2003. ISSN 1532-4435.

# <u>Step 2</u>:

 $\succ$  five cancer drugs were selected.

| Drug Name | Synonym (s)      | # of tweets | # of users |
|-----------|------------------|-------------|------------|
| Avastin   | Bevacizumab      | 264         | 236        |
| Melphalan | ALKERAN          | 23          | 15         |
| Rupatadin | Rupafin, Urtimed | 10          | 10         |
| Tamoxifen | Nolvadex         | 147         | 124        |
| Taxotere  | Docetaxel        | 45          | 39         |



### Steps 3 and 4:

> Share a similar process in which an SVM model is built based on features extracted from tweets. > We apply the Latent Dirichlet allocation (LDA) to categorize the collection of tweets into latent topics. > We then use the probability distribution of topics as features to train the SVM prediction models.



In the LDA model, each document (tweet(s) in our study)—treated as a vector of word counts using the bag-of-words approach—is viewed as a mixture of probabilities over the topics, where each topic is represented as a probability distribution over a set of words.



AE detection (old method)

# Summary

 $\succ$  We believe that the performance improvement is mainly due to the improved features. > As a data-driven method, LDA based feature extraction requires neither prior knowledge of the topics nor explicit "understanding" of the language. Thus, it is more suitable for our special tweet mining task.

### **UNIVERSITY OF ARKANSAS** FOR MEDICAL SCIENCES

| Accuracy | ROC-AUC |
|----------|---------|
| 0.79     | 0.87    |
| 0.74     | 0.82    |
| 0.81     | 0.86    |
| 0.74     | 0.74    |