
Mimimorphism: A New Approach to Binary Code
Obfuscation

Zhenyu Wu, Steven Gianvecchio, Mengjun Xie∗, and Haining Wang
The College of William and Mary

Williamsburg, VA 23187, USA
{adamwu, srgian, mjxie, hnw}@cs.wm.edu

ABSTRACT

Binary obfuscation plays an essential role in evading malware static
analysis and detection. The widely used code obfuscation tech-
niques, such as polymorphism and metamorphism, focus on evad-
ing syntax based detection. However, statistic test and seman-
tic analysis techniques have been developed to thwart their eva-
sion attempts. More recent binary obfuscation techniques are di-
vided in their purposes of attacking either statistical or semantic
approach, but not both. In this paper, we introduce mimimorphism,
a novel binary obfuscation technique with the potential of evad-
ing both statistical and semantic detections. Mimimorphic malware
uses instruction-syntax-aware high-order mimic functions to trans-
form its binary into mimicry executables that exhibit high similarity
to benign programs in terms of statistical properties and semantic
characteristics. We implement a prototype of the mimimorphic en-
gine on the Intel x86 platform, and evaluate its capability of evad-
ing statistical anomaly detection and semantic analysis detection
techniques. Our experimental results demonstrate that the mimicry
executables are indistinguishable from benign programs in terms
of byte frequency distribution and entropy, as well as control flow
fingerprint.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Security
and protection

General Terms

Security

Keywords

binary obfuscation, mimicry attack

∗This author is currently affiliated with the Department of Com-
puter Science at University of Arkansas at Little Rock and can be
reached at mxxie@ualr.edu.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

1. INTRODUCTION
Real-time malicious binary detection is the first line of defense

against malicious software. With the prevalence of anti-malware
software nowadays, in order to be executed on a host computer, a
piece of binary code is subjected to a number of detection scans
during transportation and before execution. Consequently, evad-
ing real-time binary detection is critical for malware to succeed in
propagation.

To date, real-time malware detection largely relies on static bi-
nary analysis, due to its significant speed and resource consumption
advantages over dynamic executable analysis [1, 2, 3, 4, 5]. Mal-
ware mainly evades static analysis detections through binary obfus-
cations, namely oligomorphism, polymorphism, and metamorph-
ism [6]. Oligomorphism is used to evade byte sequence signature
detections on the malware functional code. It utilizes simple op-
erations such as XOR to scramble malware functional code before
propagation, and decodes it while executing. Evolved from oligo-
morphism, polymorphism encodes malicious code by “packing”
(i.e., compressing or encrypting), and then camouflages the “un-
packer” (the decompressing or decrypting code) by using binary
mutation techniques, such as instruction substitution and register
remapping. Instead of packing program binaries, metamorphism
generates different instruction combinations to represent the same
functional part of a malicious program in its variants. The ma-
jor techniques employed by metamorphism are binary-level muta-
tions and meta-level transformations. A meta-level transformation
first translates binary code into a temporary representation called
P-code, then manipulates P-code, and finally composes a new in-
stance from P-code. In this way, metamorphic malware can signif-
icantly shuffle its program contents and escape substring signature
based detections.

Although the classic polymorphism and metamorphism enable
malware to generate many binary instances with different byte pat-
terns, they cannot effectively disguise the presence of malicious
code in terms of statistical properties and program semantics. Com-
pression and encryption in polymorphism usually change the statis-
tical characteristics of a program in such a dramatic manner that the
malware program can be easily classified as suspicious and be fur-
ther scrutinized. Exploiting this property, byte-frequency based de-
tection methods such as [7, 8] and entropy based detection methods
such as [9] have been proposed to uncover polymorphic malware.
Additionally, because compressed or encrypted code segments are
no longer executable, they can be easily identified by advanced dis-
assemblers [10]. Such a filtering strategy has been applied to ex-
tract the unpackers of polymorphic worms [11]. Meanwhile, meta-
morphism preserves semantic equivalences between different vari-
ants. This property is thus exploited by semantic analysis tech-
niques. For example, MetaAware [12] detects variants of meta-

536



morphic malware based on analysis of system call and library call
instructions.

With the advancements in detection, state-of-the-art evasion tech-
niques are moving beyond polymorphism and metamorphism. Tar-
geting byte-frequency-based static anomaly detection, polymorphic
blending attacks [13] manipulate the statistics of malware through
byte padding and substitution. Designed to thwart semantic anal-
ysis, [14] mutates a program’s control flow by transforming con-
stants into an NP-complete problem. However, while flying under
the radar of their targeted detection methods, these evasion tech-
niques are ineffective against other analysis techniques. Polymor-
phic blending can hardly escape semantics based detection such as
[11] because byte padding and substitution destroy the executable
semantics, making it easy to single out the unpacker code. Simi-
larly, encoding control flow with opaque constants induces identi-
fiable syntax patterns, which can be used as signatures.

In this paper, we introduce mimimorphism, a new approach to
binary obfuscation. Leveraging a stenographic technique—mimic
function, mimimorphism can transform a malware executable into
“mimic-binaries” that resemble ordinary benign programs. Mimi-
morphism is unique in that instead of targeting at a specific detec-
tion approach, it aims to camouflage malware binaries as legitimate
executables and thus significantly increases malware’s resistance
against a range of static statistical tests and semantic analyses. To
achieve this goal, we augment a high-order mimic function with
customized assembler and disassembler, creating an instruction-
syntax-aware mimic function—the core of the mimimorphic en-
gine. The mimimorphic engine captures the high-order instruction-
level characteristics of a given set of benign programs, and encodes
malicious binaries based on the captured characteristics. As a re-
sult, a mimimorphic binary acquires highly similar statistical prop-
erties and semantic structures to those of ordinary benign programs.

We implement a prototype of the mimimorphic engine based on
7th-order and 8th-order mimic functions, and evaluate its perfor-
mance in evading statistical anomaly tests and semantic analysis
detections. For statistical anomaly tests, we apply byte frequency
and entropy tests against both the mimicry executables and benign
programs. The results show that the mimicry executables gener-
ated by both 7th-order and 8th-order mimimorphic functions are
indistinguishable from benign programs in terms of byte frequency
and entropy scores. For semantic analysis detection, we apply the
control flow fingerprinting technique against both the mimicry exe-
cutables and benign programs. The results show that both 7th-order
and 8th-order mimimorphic engines introduce a large number of
fingerprints that match benign programs, leading to high detection
false positive rates. Moreover, even subjected to harder tests by
training the detection system with a large number of mimicry ex-
ecutables for common fingerprints extraction, the 8th-order mimi-
morphic engine can still introduce a significant quantity of benign-
program-matching fingerprints.

The remainder of this paper is structured as follows. Section
2 covers related work on malware detection and evasion. Section
3 presents the concept of mimic functions. Section 4 details the
design of our mimimorphic engine. Section 5 discusses the im-
plementation issue. Section 6 evaluates the mimimorphic engine
against different malware detection and signature generation tech-
niques. Finally, Section 7 concludes the paper with future direc-
tions.

2. RELATED WORK
Attackers increasingly employ polymorphic and metamorphic

techniques [6] to disguise their attacks and evade intrusion detec-
tion systems. The core of these techniques is to change the ap-

pearance of malicious code. Although the bit patterns of poly-
morphic attacks are distinctly different, their malicious functions
remain the same. A number of tools have been developed for gen-
erating polymorphic shellcode [15, 16] and polymorphic executa-
bles [17, 18, 19]. Since polymorphic malware and metamorphic
malware are able to significantly transform their contents in propa-
gation, as mentioned in [4, 20], they can effectively circumvent the
perimeter of the network intrusion detection systems that are based
on contiguous byte string signatures [1, 2, 5].

A basic approach to detecting polymorphic worms is based on
byte statistics, such as byte frequency [8] and byte entropy [9].
Wang et al. [8] developed a payload-based anomaly detector, PAYL,
which profiles the byte distribution of packet payloads and detects
the abnormal byte distributions of polymorphic worms. Lyda et al.

[9] demonstrated that the byte entropy of executables can be used
to effectively identify packed or encrypted malware. Tang et al.

[21] introduced the position-aware distribution signature (PADS),
which records a byte frequency distribution for each position in the
signature “string” and is capable of detecting certain types of poly-
morphic worms.

There are several advanced polymorphic attacks [13, 15] de-
signed to evade detection systems based on byte statistics. De-
tristan et al. [15] built a polymorphic engine, CLET, which uses
byte padding to approximately match the normal byte distribution.
In [13], Fogla et al. introduced an advanced polymorphic blending
attack that exploits byte substitution and byte padding to achieve
a very close match to normal profiles. The polymorphic blending
attack is effective in evading 1-gram and 2-gram PAYL [8], and
should be effective against other detection methods based on low-
order byte distributions. In [22], the problem of generating optimal
polymorphic blending attacks is shown to be NP-complete, and a
near-optimal heuristic approach is described. A drawback to these
mimicry attacks, similar to basic polymorphic attacks, is that the
encrypted regions do not contain valid instruction sequences, while
the attack vector and decryption routines are still executable, mak-
ing these regions easily differentiated.

To counter mimicry attacks, higher-order byte patterns have been
used in recent detection methods [7, 23]. In [7], Wang et al. pre-
sented a new anomaly detector, which is capable of detecting a
modified polymorphic blending attack [13], called Anagram. Ana-
gram employs a Bloom filter to reduce the computation and stor-
age requirements for modeling higher-order n-grams, in particu-
lar, n-grams 2 − 9 are chosen for experiments. While higher-order
n-grams tend to produce better signatures, their training costs are
much higher. In [23], Perdisci et al. proposed a multi-classifier sys-
tem. It summarizes higher-order n-grams as pairs of non-consecutive
bytes, reducing the dimensionality of fully modeling higher-order
n-grams. A clustering algorithm, originally proposed for text clas-
sification, is also used to reduce the dimensionality. The experi-
mental results demonstrate that the proposed detector is as robust
against evasion as a hypothetical 7-gram PAYL.

A different approach for polymorphic worm detection is based
on syntactic signatures composed of multiple invariant substrings.
The rationale behind this approach is that invariant substrings such
as protocol framing substrings and high-order bytes of overwrit-
ten addresses often occur in all variants of polymorphic malware.
Polygraph [4] proposes three types of syntactic signatures and re-
lated automatic signature generation algorithms. Hamsa [3] shares
a similar design principle and signature scheme with Polygraph,
but is faster, more noise-tolerant and attack-resilient. Both Poly-
graph and Hamsa require innocuous and suspicious traffic pools
for signature generation, and thus, are vulnerable to training at-
tacks. Perdisci et al. [24] presented a noise injection attack, in

537



which injecting just one fake anomalous flow per real worm flow
can prevent Polygraph from generating an accurate worm signa-
ture. Similarly, Newsome et al. [25] stated that malicious train-
ing can cause problems even when all of the training data are cor-
rectly labeled, and demonstrated that this type of attacks in general
can be effective against both Polygraph and Hamsa. Gundy et al.

[26] developed a polymorphic engine for PHP code and a polymor-
phic PHP-based worm that is able to evade Polygraph and Hamsa.
Venkataraman et al. [27] presented the fundamental limits on the
accuracy of a class of pattern-extraction algorithms for signature-
generation in an adversarial setting.

More recent research has begun to focus on semantic analysis
methods that extract higher-level meaning from executables[11, 12,
28, 29, 30]. Christodorescu et al. [28] proposed a semantic-aware
malware detection system, which essentially exploits the uniform
behavior exhibited by the variants of the same malware. The use of
a template transforms the malware detection problem into a tem-
plate matching problem. A program is classified as malicious if it
contains a sequence of instructions exhibiting the behavior speci-
fied by a malware template.

In [11], Kruegel et al. proposed a polymorphic worm detec-
tion scheme by utilizing the structural information of polymorphic
worms. Based on the facts that the decryption routines of polymor-
phic worms are usually executable and their control flow graphs
(CFG) are fairly stable across worm mutations, the proposed method
employs the static analysis and comparison of binary’s CFG for
worm detection. As another semantic analysis method, MetaAware
[12] detects metamorphic worms by matching call instruction pat-
terns. A pattern usually comprises multiple sub-patterns, each con-
stituting library and system call instructions with corresponding pa-
rameter setting instructions.

Due to the fundamental roles of control flow and data flow anal-
yses in static analysis, Moser et al. [14] designed a binary ob-
fuscation scheme based on the concept of opaque constants. They
demonstrated that advanced semantics-based malware detection meth-
ods (such as model checking [29]) can be effectively thwarted by
scrambling control flow and hiding data locations and usage through
obfuscation transformations. Barak et al. [31] discussed the theo-
retical limits of program obfuscation. In particular, they proved that
it is impossible to hide certain properties of particular families of
functions via program obfuscation.

The concept of mimicry has also been applied in other areas. In
the context of system call monitors—a type of dynamic host based
IDS, a mimicry attack is defined as a sequence of malicious system
calls that is still considered as legitimate by the IDS program model
[32]. Therefore, such attacks focus on discovering and exploiting
flaws in the program model, which is specified by the form of au-
tomata. Traditionally, these attacks are manually constructed [32,
33], but recent research has shown that they can be automatically
developed [34, 35, 36].

3. MIMIC FUNCTIONS
The idea of mimic functions was first introduced by Peter Wayner

[37] as a steganographic technique. A mimic function transforms
given input data into certain output that assumes the statistical prop-
erties of a different type of data, thereby concealing the true identity
of the original data.

3.1 Regular Mimic Function
The Huffman mimic function [37], referred to as the “regular

mimic function,” is the functional inverse of the Huffman coding.
The use of a mimic function involves three phases, digesting (i.e.,
Huffman tree building), encoding and decoding.

� �

���������

	
�������������

�����
�

��������� �����
�

�� ��

���������

	
�������������

�����
�

��������� �����
�

�� ��

���������

	
�������������

�����
�

��������� �����
�

�� ��

��������
�������

��������
�������

��������
�������

Figure 1: The Prefixed Symbol Tables

� �

��������	
���

��

��

�� ��

��������	
���

��

��

�� ��

��������	
���

��

��

�� ��

��������	
���

��

��

�� ��

��������	
���

��

��

�� ��

��������	
���

��

��

�� ��

Figure 2: The Prefixed Huffman Forest

Like Huffman coding, a mimic function requires a Huffman tree
to operate. In the digesting phase, a Huffman tree is constructed
based on the frequency of each symbol appearing in a given piece
of mimicry target data. In the encoding phase, the mimic function
applies the Huffman decoding operation on the input data, and pro-
duces the mimicry output by referring to the Huffman tree. In the
decoding phase, the mimic function applies the Huffman encoding

operation, referring to the same Huffman tree, and uncovers the
original input data from the mimicry output. In order to produce
the mimicry output with a symbol frequency distribution similar
to that of the mimicry target data, the input data must be random
(i.e., follow uniform distribution). To meet this requirement, the
input data can be randomized, such as XORing with a sequence of
random numbers.

However, the regular mimic function suffers from a limitation
that the symbol frequency of the mimicry output is limited to nega-
tive powers-of-2, e.g., 0.5, 0.25, 0.125, and so on. There are several
techniques to overcome this limitation and we choose to use a high-
order mimic function.

3.2 High-order Mimic Function
High-order mimic function differs from regular mimic function

mainly in the digesting phase. Instead of building a single Huffman
tree, an nth-order mimic function constructs a collection of Huff-
man trees for a detailed “profile” of the mimicry target. Specifi-
cally, as shown in Figure 1, each observed unique symbol prefix of
length n − 1 is associated with a frequency table, which records
occurrences of symbols with the given prefix. At the end of the
digesting phase, each table is converted into a Huffman tree. This
results in a forest of Huffman trees, each labeled by its symbol pre-
fix, as shown in Figure 2.

Correspondingly, in the encoding and decoding phases of an nth-
order mimic function, a symbol prefix cache of length n − 1 is
maintained, recording the sequence of symbols that have just been
encoded or decoded. For each symbol to be encoded or decoded,
the high-order mimic function first locates the Huffman tree whose
label corresponds to the current symbol prefix, and then performs
Huffman decoding and encoding operations respectively, using the
located Huffman tree.

Compared to a single Huffman tree in a regular mimic function,
the Huffman forest in a high-order mimic function contains more

538



Table 1: Mimicked English Text

Each of these historical reason, I don’t recommend
using gA(t) to choose the safe. These one-to-one en-
coded with n leaves and punctuation. The starting ev-
ery intended to find the same order mimic files. A
Method is to break the trees by constructing the mim-
ics the path down the most even though, offer no way
that is, in this paper. Figure will not overflow mem-
ory. These produced by truncating letter. This need to
handle n-th ordered compartment of nonsense words
cannot bear any resemblance to B because this task is
a Huffman showed in [1], [2], [3] among others.

detailed symbol frequency distributions as well as interdependen-
cies among a number of adjacent symbols. As a result, the output
produced by an nth-order mimic function consists of n-grams that
are observed in the mimicry target; and the occurrence of each n-
gram is close to that of the mimicry target.

3.2.1 Power of High-order Mimic Function

Compared to the polymorphic blending attack, the state-of-the-
art payload mimicry polymorphism, the high-order mimic function
holds two major advantages.

Structural and semantic mimicry: While polymorphic blend-
ing attack on large n-grams is a hard problem, high-order mimic
functions are designed to perform multi-gram mimicry. The out-
put of a high-order mimic function manifests structural and even
semantic similarities to the mimicry target. Table 1 lists a sample
output produced by a 6th-order mimic function, using Wayner’s
paper [37] as the mimicry target. Without the concept of “word”
or “grammar,” the mimic function manages to produce the para-
graphs with correctly spelled words and semi-sensible sentences.
In addition, it also successfully reproduces the grammatical feature
that every sentence starts with a capitalized letter. While a human
reader may eventually realize that the output is mere mimicry, it is
very difficult to differentiate the output from “normal” English text
by using statistical tests, such as byte frequency (spectrum) and en-
tropy. Some of the sentences can even trick a grammar parser.

Run-time efficiency: As shown in Table 2, the high-order mimic
function has a linear time computational complexity. Let R denote
the order of a mimic function, and M denote the number of possi-
ble symbols in a given language. In the digesting phase, collecting
symbol usages and constructing symbol frequency tables take lin-
ear time, using a hash table for prefix lookup. Then, converting all
symbol frequency tables into Huffman trees takes sub-linear time,
with a constant bound—the total number of entries in each table
is bounded by M and the total number of tables is bounded by
Min(n, RM )1. Overall, the digesting phase runs in linear time.
The encoding and decoding phases essentially consist of a prefix
lookup followed by a Huffman decoding or encoding, which are
constant time operations for each input or output symbol. There-
fore, the encoding and decoding phases run in linear time as well.

3.2.2 Enhancements to High-order Mimic Function

The high-order mimic function is a powerful evasion technique
against statistical anomaly detection, because it ensures the trans-
formation of any data into legitimate symbol sequences with ap-

1In theory, the constant RM can be very large. However, the upper bound
is reached only when the input data is completely random. For meaningful
data such as English text or executable binaries, the actual bound is much
lower because the number of possible fixed-length substrings is limited.

Table 2: Runtime Analysis for Mimic Function

Digesting = O(n)

Table building Reading a symbol 1
Prefix lookup 1
Recording frequency 1
Input length n

Tree conversion Sort C
Construct tree C
Number of tables C

Encoding / Decoding = O(n)

For each symbol Locate Huffman tree 1
Huffman de(en)coding 1
Input length n

proximately the same frequency of the mimicry target. However,
without proper enhancements, the mimic function falls short against
semantic analysis detection.

Compared to human languages, binary machine languages (i.e.,
executables) have higher density and less structural flexibility. With-
out the knowledge of instruction syntax, the mimic function is un-
able to generate continuous long sequences of legitimate instruc-
tions. The control flows in the mimicry output are very often in-
terrupted by malformed instructions, and thus fail to reproduce se-
mantic properties of the mimicry target. We resolve this problem in
our proposed mimimorphic engine by helping the mimic function
understand the machine language. We augment the mimic function
with customized assembler / disassembler. The enhanced mimic
function is aware of instruction syntax, and thus is capable of gen-
erating executable instructions as well as mimicking control flows.

4. MIMIMORPHIC ENGINE
The mimimorphic engine consists of four major components:

assembler, disassembler, high-order mimic function, and pseudo-
random number generator (PRNG). In this section, we describe the
function of each component and detail the three operation phases of
the mimimorphic engine: digesting, encoding and decoding. Table
3 defines a few important terms used throughout the paper.

Table 3: Mimimorphic Terms

Terms Description

Mimicry target The target binaries to be mimicked

Mimicry digest
A high-order instruction “profile”
produced by digesting the mimicry target

Mimicry output The output of the mimic function

Mimicry instance
A fake executable composed from the
mimicry output (contains malware
encoded by the mimimorphic engine)

4.1 Digesting
In the digesting phase, the mimimorphic engine takes a set of

binary executables as the mimicry target, and produces a mimicry
digest—a high-order machine language “profile.” Two components,
the disassembler and the mimic (digesting) function, are involved
in this phase, as shown in Figure 3.

Preparing for the digesting function, the disassembler decodes
instructions in the executable binary streams into CommonInst

structures, as shown in Figure 4. This structure is designed to pro-
vide a generalized abstraction from platform-specific machine in-
structions, making the mimimorphic engine easily deployable on

539



�

� �

��������

�	�
���

��	���������

�
�������������

��������

�
����

Figure 3: The Digesting Phase

�

� �

���������

	
�

���������

��

����������

����������

��

���������

	
�

���������

��

����������

����������

��
�����
�������
�

�����

�������
�

	�������������

	�������������

	�������������

���������

	
�

���������

��

����������

����������

��

�����

�������

��������

������������ !�

Figure 4: The CommonInst Structure

any instruction set architecture. The ID field contains an index to
identify each unique instruction. The mimic function treats this
field as a symbol in the machine language. The prefix fields, not
to be confused with the “symbol prefix” of the mimic function,
correspond to the fields within an instruction that alter the instruc-
tion behaviors, such as atomic memory operation and address size
override. The parameter fields record instruction parameters. Each
parameter further includes three different fields: type name, length,
and content, indicating the type, size and content of a parameter,
respectively.

After the disassembly, the digesting function processes the de-
coded instructions in a sequential manner. Internal to the digest
function, a sequence of most recently processed instruction IDs,
called InstPfx, is maintained, acting as the “symbol prefix” of the
mimic function. For each CommonInst, the digest function first
tries to locate an instruction digest table (IDT) associated with the
InstPfx. If absent, a new table is created. Then, the digest function
records the information of the CommonInst into the IDT. Finally,
it appends the current instruction ID to InstPfx before moving onto
the instruction.

The IDT consists of instruction digest records (IDRs), indexed
by the instruction ID. Each record includes a frequency counter
of the instruction, as well as frequency counters of each type of
prefixes and parameters, in the form of nested tables. To record the
information of a CommonInst, we locate the IDR (or create a new
one) with the matching instruction ID and increment its frequency
counters and all the frequency counters corresponding to each of
the prefixes and parameters noted in the CommonInst. Figure 5
illustrates the structure of an IDT and its IDRs.

At the end of the digesting phase, each IDT is converted into an
instruction Huffman tree (IHT), based on the frequency counter of
each IDR inside the table. Correspondingly, each IDR is turned
into an instruction encoding template (IET) by converting all the
frequency tables associated with the prefixes and parameters into
Huffman trees.

4.2 Encoding
Utilizing the mimicry digest, the encoding phase transforms an

arbitrary piece of binary into a sequence of executable instructions
that resembles the mimicry target. Three components of the mimi-

���������

	��
�����������

��������

��������� ��������

�� ��

���������

	��
�����������

��������

��������� ��������

�� ��

���������

���

���������

��

������������

������������

��

���������

���

���������

��

������������

������������

��

�������������

�������������

��

��������������

��������

��������������

��

�����������������

�����������������

��

���������

	��
�����������

��������

��������� ��������

�� ��

���������

	��
�����������

��������

��������� ��������

�� ��

���������

	��
�����������

��������

��������� ��������

�� ��

��������

	��
�����������

��������

�������� ��������

�� ��

Figure 5: The Instruction Digest Table and Its Records

Algorithm 1 Mimimorphic Encoding Pseudo-code

Bin: Input binary data
Digest: Mimicry digest
RSeed: Pseudo-RNG seed

Initialize InstPfx;
SBin = Randomize(Bin,RSeed);
while SBin is not empty do

IHT = Lookup(Digest, InstPfx);
IET = TreeWalk(IHT,SBin);
Inst = InstEncode(IET,SBin);
Append Inst to InstCollection;
Update InstPfx with Inst;

end while

Result = Assemble(InstCollection);

morphic engine—the PRNG, the mimic (encoding) function, and
the assembler—are involved in this phase, as shown in Figure 6.

Algorithm 1 provides a high level overview of the mimimorphic
encoding operations. Similar to the digesting function, the encod-
ing function also maintains an InstPfx, recording the sequence of
the most recently encoded instruction IDs. In the Randomize

function, the input data (i.e., malicious binary) is randomized by
XORing with a pseudo-random data stream generated by the PRNG.
This randomization is a dual purpose operation: on one hand, it en-
sures that the input data satisfies the requirement of the mimic func-
tion (i.e., uniformly distributed); on the other hand, it completely
erases all the characteristics of the original binary. The TreeWalk
function searches for an IET from the IHT by “walking” down the
Huffman tree from the root node, taking left or right branches ac-
cording to the (randomized) input bits—this is essentially a Huff-
man decoding operation. Then, the InstEncode function con-
structs mimicry instructions based on the IET. Each prefix or pa-

rameter field in the IET is associated with a Huffman tree, and thus
the generation of a prefix or parameter is essentially a Huffman
decoding operation as well. The constructed mimicry instructions
are stored in the form of CommonInst structures, which are later
converted to binary machine instructions by the assembler.

Figure 7 shows an example of a 7th-order mimimorphic engine
generating an instruction in a function prologue. First, an IHT

is looked up based on the six previously-generated instructions.
Then the engine searches the tree branches according to the in-
put bits, until a leaf node is reached. The leaf node is an IET

of a “MOV” instruction, which contains the information of this
instruction used after this particular prefix in the mimicry target.
The encode function further leverages this information to generate
a mimicry “MOV” instruction.

540



�

� �

����������

	
����

��
����
�
��������

�������

�
���������

�����

��������

	����������

Figure 6: The Encoding Phase

�

� �

����

�����

����

�����

��	�


�

����������	�
������
������ ����������	�
���	����
���������

����

�������

������� �������

����������

�CommonInst��

��

����

�����

���� ����

��

��

��

��

��

Figure 7: An Encoding Example

4.3 Decoding
The decoding phase is the inverse of the encoding phase, as

shown in Figure 8. Based on the same mimicry digest, the decod-
ing phase uncovers the input data from the mimicry output. There
are three components of the mimimorphic engine involved in this
phase: the disassembler, the mimic (decoding) function, and the
PRNG.

Algorithm 2 Mimimorphic Decoding Pseudo-code

MimicryIn: Mimicry instance
Digest: Mimicry digest
RSeed: Pseudo-RNG seed

Initialize InstPfx;
InstCollection = Disassemble(MimicryIn);
for each Inst in InstCollection do

IHT = Lookup(Digest, InstPfx);
(IET, IData) = NodeLookup(IHT, Inst);
IData = InstDecode(IET, Inst);
Append IData to DataRand;
Update InstPfx with Inst;

end for

Result = Derandomize(DataRand, RSeed);

The high level description of the mimimorphic decoding opera-
tions is given in Algorithm 2. Again, the InstPfx is used to record
the most recently decoded instruction IDs. A mimicry instance is
first disassembled into CommonInst structures, before being pro-
cessed sequentially. The NodeLookup function locates the IET

in the IHT with the matching instruction ID. Meanwhile, it pro-
duces a stream of data bits that corresponds to the branches taken
from the root of the Huffman tree to the leaf node—this is essen-
tially a Huffman encoding operation. The InstDecode function
further retrieves the data bits encoded in each mimicry instruction
by performing Huffman encoding operations for all the prefixes
and parameters with their corresponding Huffman trees in the IET.
Finally, the Derandomize function uncovers the original data
by XORing the decoded data with a pseudo-random data stream,
which are generated by the PRNG with the same seed used in the
encoding phase.

Figure 9 shows an example of a 7th-order mimimorphic engine
decoding the instruction produced in the previous encoding exam-
ple. First, an IHT is located based on the six previously-generated
instructions. Then the engine looks up the leaf node IET that corre-

sponds to the current instruction to be decoded, in this example, the
“MOV” instruction. The path from the IHT root to this leaf node is
then converted to data bits. The similar operations are performed
for each of the prefixes and parameters of the “MOV” instruction,
using the corresponding Huffman trees in the IET and producing a
stream of data bits.

4.4 Design Issues
We now discuss a few important design issues in the digesting

and encoding phases, which affect the quality of mimicry. These
issues include (1) how to handle embedded data in digest binaries,
(2) how to select a good random source, and (3) how to ensure valid
control flow generation.

In the digesting phase, the mimicry target binaries are first disas-
sembled into CommonInst structures before digesting. However,
in most legitimate executable binaries, there are a small but non-
negligible amount of embedded data, which mainly consist of con-
stants and jump address tables. Simply ignoring these embedded
data might cause the statistical properties of the mimicry output to
deviate from those of the mimicry target, resulting in the degra-
dation of mimicry quality. We resolve this problem by masquerad-
ing embedded data as special one-byte-no-parameter “instructions”
and digesting them along with other real instructions.

Recall that, in the encoding phase, a regular mimic function re-
quires input data to be uniformly distributed, so as to produce the
mimicry output with the statistical properties approximating those
of the mimicry target. Correspondingly, a high-order mimic func-
tion also requires the input data to be randomized on high-order. In
our mimimorphic engine design, we select MT19937 PRNG [38],
which claims to have equidistribution in 623 dimensions. Other
PRNGs that can pass high dimensional distribution tests could be
used as well.

Although the mimimorphic engine ensures valid instruction gen-
eration, it does not guarantee to produce valid control flows. This is
because branch/call instructions use byte offset to redirect control
flows. In addition that the lengths of instructions are not fixed, there
is no prior knowledge of subsequent instruction generations when
the mimimorphic engine produces a branch/call instruction. Thus,
a byte offset could point to the middle of a following instruction, in-
validating the control flow. We resolve this problem by performing
control flow correction on the intermediate data after the encoding
phase. Instead of outputting the binary as soon as each instruction
is generated, we keep all the CommonInst structures in a linked
list. Then, for each branch and call instruction, we inspect whether
its referring offset aligns to an instruction, and make corrections if

541



�

�������

��	�
��	�
�����

�����
�

�	��
���
��

�������

�����
�����

�����

������������

Figure 8: The Decoding Phase

�

����

�����

����

�����

��	�

����


���������	�
������
������ 
���������	�
���	����
���������

����

��������

������� �������


���������

�������

����

��

����

�����

���� ����

��

��

��

��

��

�����  �

Figure 9: An Decoding Example

necessary. We have verified the effectiveness of the solution by per-
forming control flow analysis and basic block identification [11] on
the mimicry output with and without control flow correction. We
have observed that the number of valid basic blocks increases by
nearly seven times with control flow correction.

5. IMPLEMENTATION
We have implemented a prototype of the mimimorphic engine on

the Intel x86 architecture. While the current implementation works
on the Windows XP, its core component is OS-independent and
can be easily ported to Unix variants. In the following, we briefly
describe some non-trivial implementation details.

First, a mimicry target is required for the mimimorphic engine
to perform transformations. We randomly select 100 executable
files from the system32 folder of the Windows XP, and extract
their “text” sections to form a representative set of “normal” exe-
cutables. System executables and libraries make good candidates
of the mimicry target, because they exist on the majority of victim
hosts, and they are also commonly delivered over the Internet (i.e.,
in forms of security patches).

Second, based on our observation of the basic block size of the
mimicry target, we set the order of mimic functions to 7-8. Consid-
ering the unique feature of mimimorphism, we attempt to generate
mimicked control flows that can be used to evade advanced seman-
tic analysis detection. Because control flows are formed by basic
blocks, the success of mimicking basic blocks is essential to the
generation of mimicry control flows. We profile the basic block
size of our selected mimicry target executable files, and observe
that 89% of the executable files have the average basic block size
less than or equal to eight instructions.

Third, we use a hash table to provide fast prefix lookup of IHT.
Although the number of possible “symbol prefix” grows exponen-
tially as the order of the mimic function increases, the number of
observed unique prefixes is bounded by the size of input. With a
relatively large hash table (22 bits), we are able to achieve reason-
ably low collision rate. In our experiments, the utilization rates of
the hash table are below 20% and 25% for 7th-order and 8th-order
mimic functions, respectively. For both mimic functions, 85% of
entries are collision free, and over 99% of entries have less than or
equal to one collision.

6. EVALUATION
We use 7th-order and 8th-order mimic functions in the mimi-

morphic engine (M7 and M8 for short). An 83KB executable file is

used as a hypothetical malware program, on which we apply mimi-
morphism. For each M7 and M8, we generate 100 instances of the
mimicry output, and each instance uses a different seed value for in-
put data randomization. We evaluate the effectiveness of mimicry
from two detection aspects: statistical test and semantic analysis
test. Note that whether the executable file is a “real” malware or
not is irrelevant to our evaluation. This is because (1) as stated
in Section 4.2, the input randomization in the encoding phase has
completely erased all the characteristics of the input data, thereby
any input data would yield equivalent output; and (2) the detections
we apply in our experiments are generic anomaly and similarity
tests, instead of specific malware detections (such as commercial
malware/virus scanners).

6.1 Statistical Tests
We run our mimimorphic output, M7 and M8 files, against sta-

tistical tests, namely the Kolmogorov-Smirnov and byte entropy
tests. The Kolmogorov-Smirnov test is a general purpose statistical
test, whereas the byte entropy test is proposed for detecting packed
or encrypted malware [9]. Although the Kolmogorov-Smirnov test
is more powerful, it can only determine if a sample is anomalous,
whereas the byte entropy can determine if a sample is, with high
probability, a compressed or encrypted file.

The Kolmogorov-Smirnov test determines whether or not two
samples (or a sample and a distribution) differ by measuring the
maximum distance between two empirical distribution functions:

KSTEST = max | S1(x) − S2(x) |

where S1 and S2 are the empirical distribution functions of the
two samples. This test is distribution free—in other words, the
test statistic is not dependent on a specific distribution, and thus, is
very general in applicability. The Kolmogorov-Smirnov test is fre-
quently used in steganalysis—the analysis of steganographic tech-
niques, so its usage in evaluating the mimimorphic attack, a stegano-
graphic method, is pertinent. For our experiments, we perform
Kolmogorov-Smirnov test between samples, mimicry or legitimate
files, and a database of legitimate files. If the test statistic is low, the
sample is classified as normal, otherwise the sample is classified as
suspicious.

The mean and standard deviation of the Kolmogorov-Smirnov
test scores are listed in Table 4. For the legitimate files, the mean
score is 0.074 and the standard deviation is 0.045. For M7 and
M8 files, the mean scores are 0.109 and 0.093, respectively. The
standard deviation of the mimicry files is very low compared to
that of the legitimate files. This is mainly due to the size of the

542



Table 4: Kolmogorov-Smirnov Results

Mean Std. Dev.

Legitimate 0.074 0.045

M7 0.109 0.007

M8 0.093 0.006

mimicry files. M7 and M8 files are approximately 2.4MB and
3.3MB, whereas the legitimate files range from 1KB to 0.5MB. As
smaller files are statistically more likely to vary from the expected
value, the variance of the mimicry files, whose sizes are larger on
average, is very small. Although the test scores of the mimicry files
are higher on average, the majority of these test scores fall within
one standard deviation of the legitimate mean, 0.074 ± 0.045 (or
0.019 to 0.119). Therefore, the Kolmogorov-Smirnov test is unable
to reliably differentiate mimicry files from legitimate files.

The byte entropy test is based on the randomness of compressed
or encrypted files. The byte entropy test [9] measures the random-
ness of the distribution of bytes:

entropy(X) = −
X

X

P (x)logP (x)

where X is a byte sample and P (x) is the probability P (X = x).
For our experiments, we measure the byte entropy of different test
samples, either mimicry or legitimate files. If the entropy is high,
then the sample is suspected as compressed or encrypted malware,
which may be further examined by unpacking via emulation or
other dynamic analysis. However, if the entropy is low, i.e., in
the range of typical executables, then the sample is classified as
uncompressed and unencrypted.

Table 5: Byte Entropy Results

Mean Std. Dev.

Legitimate 6.353 0.258

M7 6.545 0.021

M8 6.528 0.021

The mean and standard deviation of the byte entropy test scores
are listed in Table 5. For the legitimate files, the mean score is 6.353
and the standard deviation is 0.258. For M7 and M8, the mean
scores are 6.545 and 6.528, respectively. Like the Kolmogorov-
Smirnov results, the standard deviation of the mimicry files is very
low, again due to their file sizes. In comparison to those of legit-
imate files, the test scores of M7 and M8 are slightly higher on
average, but fall well within one standard deviation of the legiti-
mate mean, 6.35±0.258 or 6.095 to 6.881. Based on these results,
the byte entropy test is unable to differentiate mimicry files from
legitimate files. Moreover, packed and encrypted executables have
byte entropies over 7 [9], so M7 and M8 are successful in disguis-
ing their packed content as normal executables.

6.2 Semantic Analysis Test
We use M7 and M8 to evaluate mimimorphic attacks against

semantic analysis detection, particularly, the detection based on
control flow fingerprinting [11]. This detection technique analyzes
the control flows of binaries, and generates “fingerprints” for those
control flows. To detect polymorphic malware, the system com-
pares the fingerprints for suspicious network traffic against the fin-
gerprints of known malware instances. If a sufficient number of fin-
gerprints match, the detection system asserts with high confidence
that the traffic contains malware.

 

%#..��(WPE��
,/2�

%#..��(WPE��

%/2��'#:��'$:�
,<�

.'#���'#:��='$2����J?�
275*��'#:�
%#..��(WPE��
6'56��#.��#.�
,0<�

%#..��&5�(WPE2VT��
%/2���'#:�����J�
,<�

/18��'#:��'&+�
0')��'#:�
5$$��'#:��'#:�

275*��'$:�
%#..��&5�(WPE2VT��
275*��'#:�

Figure 10: A Sample of M7 Control Flow Graph

Mimimorphism attacks the control flow fingerprinting detection
by introducing a large number of mimicked control flows to resem-
ble those of legitimate binaries. The detection system generates a
number of fingerprints from a database of malware, i.e., M7 and
M8 instances. The fingerprints generated by the detection system
can be described as “good” or “badi.” A good fingerprint matches
only malware files, but a bad fingerprint matches both malware and
legitimate files. Figure 10 presents an example of “mimicry control
flow graph” in an M7 instance. Except for the underlined func-
tion addresses, the instruction sequence matches that of a system
library file. As a result, the fingerprint generated from this segment
of code is “bad.” When the majority of fingerprints generated by
the detection system are bad, it would suffer high false positives.

As a basic test, we first measure fingerprints that are common
in the original hypothetical malware program and the M7/M8 in-
stances. We observe that only one file from each set of instances,
M7 and M8, has one or more common fingerprints with the hypo-
thetical malware. The M7 file shares three common fingerprints,
while the M8 file shares only one. Thus, overall M7 and M8 are
successful in erasing the signatures from the original malware. We
then proceed to measure the number of bad fingerprints produced
from M7 and M8 instances, and the number of good and bad fin-
gerprints shared by all M7 and M8 instances.

Table 6: Bad Fingerprints for M7 and M8 Instances

M7

Mean Std. Dev. Max. Min.

Bad fprts. 1856.46 372.5 3321 1057

Matched files 72.93 14.53 92 44

M8

Mean Std. Dev. Max. Min.

Bad fprts. 11407.99 912.42 14216 9606

Matched files 81.37 4.06 91 70

Table 6 presents the results of fingerprint comparisons in terms of
mean, standard deviation, maximum and minimum counts between
the legitimate files and M7/M8 files, respectively. The “bad finger-
prints” row shows the number of bad fingerprints. The “matched
files” row shows the number of legitimate files that share one or
more fingerprints with a mimicry file. For all rows, larger numbers
indicate that mimicry attacks are more successful.

543



10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18
x 10

4

Number of Instances

B
ad

 F
in

ge
rp

rin
ts

 

 

M 7
Fitting
M 8
Fitting

Figure 11: Bad Fingerprints in Collections

of M7 and M8 Instances

0 20 40 60 80 100
0

100

200

300

400

500

600

Number of Instances

B
ad

 s
ig

na
tu

re
s

(A)

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

Number of Instances

B
ad

 F
in

ge
rp

rin
ts

(B)

Figure 12: Shared Bad Fingerprints in Collections of M7 and M8 Instances

On average an M7 mimicry file contains 1856.46 bad finger-
prints, and shares one or more bad fingerprints with 72.93% of the
legitimate files. The most successful M7 mimicry instance shares
one or more fingerprints with 92 legitimate files, while the least
successful instance reproduces fingerprints in only 44 legitimate
files. On average, an M8 mimicry file contains 11407.99 bad fin-
gerprints, and shares one or more fingerprints with 81.37% of the
legitimate files. The most successful M8 mimicry instance shares
fingerprints with 91 legitimate files, while the least successful in-
stance reproduces fingerprints in only 70 legitimate files.

Figure 11 illustrates the total number of bad fingerprints con-
tained in a collection of N (1 ≤ N ≤ 100) M7 and M8 files.
It highlights the mimimorphic engine’s capability to mimic finger-
prints from the legitimate files. The dashed and solid lines are curve
fittings of the M7 and M8 data points, respectively. We can see that
for both M7 and M8 files, as the number of instances increases, the
total number of bad fingerprints increases, following a polynomial
distribution.

Results in Table 6 and Figure 11 indicate that both M7 and M8

are successful in mimicking control flows of the mimicry target
binaries. An M7 or M8 mimimorphic malware instance contains
thousands to tens of thousands of bad fingerprints. As a result, the
high false positive rates make it impractical to use the control flow
fingerprints of a mimimorphic malware instance for detecting the
other instances.

With greater efforts, a number of mimimorphic malware instances
can be collected and analyzed, and their shared fingerprints can be
extracted. However, our results show that such an approach can
only achieve limited improvements on detecting mimimorphic mal-
ware. Figures 12 (A) and (B) present the results of the fingerprint
comparisons between the legitimate files and a collection of N in-
stances (2 ≤ N ≤ 100) of M7 and M8 files, respectively. The line
signifies the number of bad fingerprints. While the bad fingerprint
counts for N = 2 decrease dramatically compared to the results in
Table 6, the decrease slows down and the bad fingerprints stabilize
at a non-zero value. More specifically, when N = 100, for M7

files, there are 18 bad fingerprints; for M8 files, there are 321 bad
fingerprints.

While the above two figures indicate very positive results for
both M7 and M8, the number of shared fingerprints among 100
mimicry files presented in Table 7 gives us some surprises. When
N = 100, there are 161 fingerprints shared by all M7 files, but only
18 match legitimate files. This implies that the M7 mimimorphic
engine generates 143 fingerprints that can be used to identify the
mimimorphic instances! However, the results are much better for
M8 files. Whereas there are 339 shared fingerprints in all M8 files,
321 of them match legitimate files, leaving only 18 additional fin-

Table 7: Shared Fingerprints of All M7 and M8 Instances and

Good/Bad Fingerprints in Them

Shared fprnts. Bad fprnts. Good fprnts.

M7 161 18 143

M8 339 321 18

gerprints. The polymorphic instances of a malware normally have
tens to hundreds of shared fingerprints [11]. Thus, even with 100
instances of M8 mimimorphic malware, there are still comparable
amount of bad signatures mixed with the good signatures of the
malware. Therefore, even given a large number of identified in-
stances, M8 mimimorphic malware can still maintain enough bad
fingerprints to render the control flow fingerprints unusable.

6.3 Discussion
Artifact generation: Table 7 shows an interesting phenomenon

that the mimimorphic engine produces shared fingerprints in all in-
stances that do not belong to any legitimate file. We call this phe-
nomenon persistent artifact generation. It is caused by digesting
data with limited order mimic functions. When the mimic func-
tion digests two sequences of symbols that share a common subse-
quence with interdependencies longer than the order of the mimic
function, the interdependencies will be partially merged. Thus,
it is possible for the mimicry output to contain long symbol se-
quences constructed by mixing and matching the original parts. As
a more intuitive example, when examining the mimicry output of
the 6th-order English mimic function, we sometimes encounter er-
ratic words, such as “operationale” and “instructural”, which are
the combinations of the words “operational” and “rationale”, and
“instruction” and “structural”, respectively. Because the combina-
tions are limited by the number of such long symbol sequences,
the mimic function tends to reproduce the same erratic words per-
sistently. This problematic phenomenon can be greatly reduced by
increasing the order of the mimic function, as demonstrated by the
M8 files, because of the increased symbol prefix length. Back to the
previous example, a 7th-order English mimic function would not
produce the word “instructural” because “instruction” and “struc-
tural” do not have any common 7-grams.

Robustness against other detection approaches: Mimimorph-
ism is also robust against other static analysis detection methods,
such as automatic n-gram signature generation, and certain types
of semantic analysis techniques. An Nth-order mimimorphic en-
gine digests the mimicry target binaries in units of N adjacent
instructions, and thus its mimicry output consists of series of N-
instruction-grams, i.e., N consecutive instructions, observed from
the mimicry target. As a result, for n ≤ N × b, where b is the

544



instruction length in bytes, the mimicry output should not contain
any n-byte-grams that do not match the mimicry target. Based on
our observation, the average length of an Intel x86 instruction is
between 2.1-2.8. Thus, in theory, a 16-gram byte test would be
needed to reliably generate signatures for an M8 mimimorphic mal-
ware. Semantic analysis techniques, which make decision based on
short-range semantic similarities [12], are also vulnerable to mimi-
morphic attacks, due to the large number of randomly generated
control flows that are similar to legitimate binaries.

In our current implementation, the mimimorphic engine has lim-
ited ability to mimic program-level high-order syntactic and se-
mantic characteristics, such as function boundaries, prologue and
epilogue. Without the high-level concept of “functions,” the mimi-
morphic engine can only capture and generate the related syntac-
tic and semantic properties in a probabilistic and best-effort man-
ner. We manually inspected an M8 file, and found that about 45%
of “functions” miss function prologue or epilogue sequence, and
some relative jumps go across function boundaries. While it is
possible to take advantage of these common program-level prop-
erties to identify our mimimorphic instances, we do not consider
it a viable detection approach. Because those properties exist only
by convention, and there are many programs that deviate from the
norm, especially on copyright protected executables that employ
non-conventional protection techniques [39]. Detection based on
non-conforming of conventions would suffer high false positive
rates.

Constraints: There are two constraints for applying mimimorph-
ism: memory consumption and payload size increase. Currently,
the M7 and M8 mimimorphic transformations on average consume
600MB and 1.2GB memory, and increase the payload size by 20
and 30 times, respectively. However, both constraints can be effec-
tively mitigated. To reduce memory consumption, we could imple-
ment an on-demand, disk based Huffman forest structure, which
only loads Huffman trees into memory as needed2. With mimi-
morphic transformations on executable of reasonable size, only a
small portion of Huffman trees will be traversed (bounded by input
size) and thus the memory consumption is significantly reduced.
To limit the payload size increase, we can apply compression to the
input data before randomization. Because the size growth only oc-
curs at the encoding phase, which takes already highly randomized
data, compressing data before randomization does not affect the in-
flation ratio of the mimic function. Assuming compressing plain
executables decreases their size by 30% [40, 41], applying com-
pression before mimimorphic transformation thus can also lower
the payload size increase by 30%.

Decoder: Like polymorphic malware, mimimorphic malware re-
quires to ship its decoder with the payload. The decoder needs to
be directly executable and thus cannot be transformed into non-
executable data. As a result, the decoder is the common weak-
ness of polymorphic malware, because its packed payloads have
abnormal statistical properties and are not executable, making the
decoder binaries easily extracted and analyzed. In contrast, mimi-
morphism by design provides much improved protection for the
decoder. Because the mimimorphic payloads have similar statisti-
cal and semantic properties of executable binaries, correctly iden-
tify the decoder binary for signature extraction is no longer an easy
task. We plan to explore techniques that “blend” the decoder con-
trol flow into the payload, side-by-side with hundreds of thousands
of fake-but-legit-like mimicry control flows, effectively thwarting
attempts to extract the decoder statically.

2
The “dehydrated” Huffman trees stored on disk use much less space than

in RAM. The file sizes of digest data for M7 and M8 mimimorphism are
only about 150MB and 300MB, respectively.

7. CONCLUSION
In this paper we have introduced a novel binary obfuscation tech-

nique, called mimimorphism. Mimimorphism can transform a bi-
nary executable into a mimicry executable, with statistical and se-
mantic characteristics highly similar to those of the mimicry target.
Exploiting mimimorphism, malware can successfully evade certain
statistical anomaly detections, automatic substring signature gener-
ation, as well as some state-of-the-art semantic analysis techniques.

We have implemented a prototype of the mimimorphic engine on
the Intel x86 platform. Our experimental results validate its efficacy
in evading statistical anomaly detection—the byte frequency distri-
bution test and entropy test—and a semantic analysis technique—
the control flow fingerprinting. In the byte frequency distribution
test and entropy test, the mimicry output produced by the mimi-
morphic engine falls within the ranges of normal executable files.
For control flow fingerprinting, the mimicry output produced by
the mimimorphic engine induces a large number of fingerprints that
match legitimate binaries, leading to high detection false positives.

In our future work, we would like to refine our mimimorphic en-
gine and evaluate its performance on real scenarios. We are also
interested in the study of effective counter-measures against mimi-
morphism. For instance, we will explore the possibility of detecting
mimimorphism through higher-order mimic functions and higher
level semantics.

Acknowledgments

The authors would like to thank the anonymous reviewers for their
detailed and valuable comments. This work was partially supported
by NSF grant 0901537 and ONR grant N00014-09-1-0746.

8. REFERENCES

[1] H.-A. Kim and B. Karp, “Autograph: Toward automated,
distributed worm signature detection,” in Proceedings of

13th USENIX Security Symposium, 2004.

[2] C. Kreibich and J. Crowcroft, “Honeycomb: creating
intrusion detection signatures using honeypots,” in
Proceedings of 2nd Workshop on Hot Topics in Networks

(Hotnets-II), 2003.

[3] Z. Li, M. Sanghi, B. Chavez, Y. Chen, and M.-Y. Kao,
“Hamsa: Fast signature generation for zero-day polymorphic
worms with provable attack resilience,” in Proceedings of the

2006 IEEE Symposium on Security and Privacy (S&P), 2006.

[4] J. Newsome, B. Karp, and D. Song, “Polygraph:
Automatically generating signatures for polymorphic
worms,” in Proceedings of the 2005 IEEE Symposium on

Security and Privacy (S&P), 2005.

[5] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated
worm fingerprinting,” in Proceedings of the 6th

ACM/USENIX Symposium on Operating System Design and

Implementation (OSDI), 2004.

[6] P. Szor, The Art of Computer Virus Research and Defense.
Symantec Press, 2005.

[7] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content
anomaly detector resistant to mimicry attack,” in
Proceedings of the 9th International Symposium on Recent

Advanced in Intrusion Detection (RAID), 2006.

[8] K. Wang and S. Stolfo, “Anomalous payload-based network
intrusion detection,” in Proceedings of the 7th International

Symposium on Recent Advances in Intrusion Detection

(RAID), 2004.

545



[9] R. Lyda and J. Hamrock, “Using entropy analysis to find
encrypted and packed malware,” IEEE Security and Privacy,
vol. 5, no. 2, pp. 40–45, 2007.

[10] C. Kruegel, W. K. Robertson, F. Valeur, and G. Vigna,
“Static disassembly of obfuscated binaries,” in Proceedings

of the 13th USENIX Security Symposium, 2004.

[11] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,
“Polymorphic worm detection using structural information
of executables,” in Proceedings of the 8th International

Symposium on Recent Advances in Intrusion Detection

(RAID), 2005.

[12] Q. Zhang and D. S. Reeves, “MetaAware: Identifying
metamorphic malware,” in Proceedings of the 23rd Annual

Computer Security Applications Conference (ACSAC), 2007,
pp. 411–420.

[13] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee,
“Polymorphic blending attacks,” in Proceedings of the 15th

USENIX Security Symposium, 2006.

[14] A. Moser, C. Kruegel, and E. Kirda, “Limits of static
analysis for malware detection,” in Proceedings of the 23rd

Annual Computer Security Applications Conference

(ACSAC), 2007, pp. 421–430.

[15] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk,
“Polymorphic shellcode engine using spectrum analysis,”
Phrack Issue 0x3d, 2003.

[16] S. Macaulay, “Admmutate: Polymorphic shellcode engine,”
http://www.ktwo.ca/security.html.

[17] M. Khafir, “Trident polymorphic engine,”
http://vx.netlux.org/lib/vx.php?id=et06.

[18] F. Perriot, P. Ferrie, and P. Szor, “Striking similarities:
Win32/simile,” http://securityresponse.symantec.com/
avcenter/reference/simile.pdf.

[19] Z0mbie, “Automated reverse engineering: Mistfall engine,”
http://vx.netlux.org/lib/vzo21.html.

[20] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong, “On
deriving unknown vulnerabilities from zero-day polymorphic
and metamorphic worm exploits,” in Proceedings of the 12th

ACM Conference on Computer and Communications

Security (CCS), 2005, pp. 235–248.

[21] Y. Tang and S. Chen, “Defending against internet worms: a
signature-based approach,” in Proceedings of the 24th

INFOCOM, 2005.

[22] P. Fogla and W. Lee, “Evading network anomaly detection
systems: formal reasoning and practical techniques,” in
Proceedings of the 13th ACM conference on Computer and

communications security (CCS), 2006, pp. 59–68.

[23] R. Perdisci, G. Gu, and W. Lee, “Using an ensemble of
one-class svm classifiers to harden payload-based anomaly
detection systems,” in Proceedings of the Sixth International

Conference on Data Mining, 2006, pp. 488–498.

[24] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif,
“Misleading worm signature generators using deliberate
noise injection,” in Proceedings of the 2006 IEEE

Symposium on Security and Privacy (S&P), 2006.

[25] J. Newsome, B. Karp, and D. X. Song, “Paragraph:
Thwarting signature learning by training maliciously.” in
Proceedings of the 9th International Symposium on Recent

Advanced in Intrusion Detection (RAID), 2006.

[26] M. V. Gundy, D. Balzarotti, and G. Vigna, “Catch me, if you
can: Evading network signatures with web-based

polymorphic worms,” in Proceedings of 1st USENIX

Workshop on Offensive Technologies, 2007.

[27] S. Venkataraman, A. Blum, and D. Song, “Limits of
learning-based signature generation with adversaries,” in
Proceedings of the 15th Annual Network and Distributed

Systems Security Symposium (NDSS), 2008.

[28] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E.
Bryant, “Semantics-aware malware detection,” in
Proceedings of the 2005 IEEE Symposium on Security and

Privacy (S&P), 2005.

[29] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith,
“Detecting malicious code by model checking,” in
Proceedings of the 2nd International Conference Detection

of Intrusions and Malware, and Vulnerability Assessment

(DIMVA), 2005, pp. 174–187.

[30] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha, “An
architecture for generating semantics-aware signatures,” in
Proceedings of the 14th USENIX Security Symposium, 2005.

[31] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai,
S. P. Vadhan, and K. Yang, “On the (im)possibility of
obfuscating programs,” in Proceedings of the 21st Annual

International Cryptology Conference (CRYPTO), 2001.

[32] D. Wagner and P. Soto, “Mimicry attacks on host-based
intrusion detection systems,” in Proceedings of the 9th ACM

conference on Computer and communications security

(CCS), 2002, pp. 255–264.

[33] K. M. C. Tan, K. S. Killourhy, and R. A. Maxion,
“Undermining an anomaly-based intrusion detection system
using common exploits,” in Proceedings of the 5th

International Symposium on Recent Advances in Intrusion

Detection (RAID), 2002.

[34] J. Giffin, S. Jha, and B. Miller, “Automated discovery of
mimicry attacks,” in Proceedings of the 9th International

Symposium on Recent Advances in Intrusion Detection

(RAID), 2006.

[35] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna,
“Automating mimicry attacks using static binary analysis,” in
Proceedings of the 14th USENIX Security Symposium, 2005.

[36] C. Parampalli, R. Sekar, and R. Johnson, “A practical
mimicry attack against powerful system-call monitors,” in
Proceedings of the 2007 ACM Symposium on Information,

Computer and Communications Security (ASIACCS), 2007.

[37] P. Wayner, “Mimic functions,” Cryptologia, vol. 16, no. 3,
pp. 193–214, 1992.

[38] M. Matsumoto and T. Nishimura, “Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random
number generator,” ACM Transactions on Modeling and

Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3–30,
1998.

[39] T. E. Dube, B. D. Birrer, R. A. Raines, R. O. Baldwin, B. E.
Mullins, R. W. Bennington, and C. E. Reuter, “Hindering
reverse engineering: Thinking outside the box,” IEEE

Security and Privac, vol. 6, no. 2, pp. 58–65, 2008.

[40] S. Debray, “Code compression,” in Proceedings of the 7th

International Symposium on Practical Aspects of

Declarative Languages, 2005.

[41] S. Debray and W. Evans, “Profile-guided code compression,”
in Proc. SIGPLAN ’02 Conference on Programming

Language Design and Implementation (PLDI), 2002.

546


