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Abstract—Many studies have been conducted to apply behav-
ioral biometric authentication on/with mobile devices and they
have shown promising results. However, the concern about the
verification accuracy of behavioral biometrics is still common
given the dynamic nature of behavioral biometrics. In this paper,
we address the accuracy concern from a new perspective—
behavior segments, that is, segments of a gesture instead of the
whole gesture as the basic building block for behavioral biometric
authentication. With this unique perspective, we propose a new be-
havioral biometric authentication method called SEGAUTH, which
can be applied to various gesture or motion based authentication
scenarios. SEGAUTH can achieve high accuracy by focusing on
each user’s distinctive gesture segments that frequently appear
across his or her gestures. In SEGAUTH, a time series derived
from a gesture/motion is first partitioned into segments and then
transformed into a set of string tokens in which the tokens
representing distinctive, repetitive segments are associated with
higher genuine probabilities than those tokens that are common
across users. An overall genuine score calculated from all the
tokens derived from a gesture is used to determine the user’s
authenticity. We have assessed the effectiveness of SEGAUTH using
4 different datasets. Our experimental results demonstrate that
SEGAUTH can achieve higher accuracy consistently than existing
popular methods on the evaluation datasets.

I. INTRODUCTION

Biometrics becomes increasingly popular in user authentica-
tion, especially on mobile devices. For example, many smart-
phones of latest models have been equipped with a fingerprint
scanner so that users can use their fingerprint instead of a
password or personal identification number (PIN) to unlock
the screen. For biometric authentication a user can be verified
based on either his or her distinct physiological traits (e.g.,
fingerprint, iris) or behavioral patterns (e.g., gait, hand gesture).
Compared to physiological biometrics, behavioral biometrics,
which is embedded in humans’ behavior, is more difficult to
steal or mimic and therefore causes less privacy concerns.
Among growing interests in applying behavioral biometrics
to security and privacy protection, gesture or motion based
behavioral biometric authentication has attracted a great deal
of research efforts (e.g., [1], [4], [18], [21], [24], [22], [19],
[32], [30], [3]).

Although many research studies have shown that gesture-
based behavioral biometrics is very promising for mobile
authentication, a common concern about the accuracy of behav-
ioral biometric authentication still exists. Unlike physiological
biometrics, behavioral biometrics is inherently dynamic, which
poses a big challenge to verification methods. Using gesture-
based behavioral biometric authentication as an example, due

to the dynamic nature in performing gestures, a testing sample
of the same gesture by the same person can vary nontrivially
in part from that person’s prior training samples. Therefore, the
testing sample can be rejected by the authentication system if
the system assumes a user can repeat the gesture in exactly
the same manner. On the other hand, a usable authentication
system should also be resistant to a variety of attacks especially
mimicry attacks while accepting legitimate users.

Figures 1 (for the user with ID 13) and 2 (for the user with
ID 25) exemplify such a case. Both figures depict the x-axis
acceleration time series obtained from the user’s two samples of
the same drawing-a-circle gesture performed at different times
[30]. On one hand, the two time series from the same user
appear to be different more or less. For example, the curve in
Figure 1 (a) exhibits strong oscillation in the middle while the
curve in Figure 1 (b) does not; The curve in Figure 2 (a) is
apparently longer than the curve in Figure 2 (b) besides other
differences. On the other hand, a certain level of similarity
manifests between the time series in Figure 2 (a) and the one in
Figure 1 (b). In fact, if dynamic time warping (DTW) is applied
to measure the similarity (or difference) of two time series, the
DTW distance between the two time series in Figures 1 (b) and
2 (a) (denoted as DS) is actually smaller (i.e., more similar)
than the DTW distance between the two time series in Figures
1 (a) and 1 (b) (denoted as DL). As a toy example, suppose the
time series in Figure 1 (b) is adopted as the template for user
13 and DTW is employed as the verification method. The time
series in Figure 1 (a) would be falsely rejected if the similarity
threshold is smaller than DL and/or the time series in Figure
2 (a) would be falsely accepted if the similarity threshold is
greater than DS . It appears unavoidable to have either a false
rejection, a false acceptance, or both.

If we change our perspective by treating the entire time series
as a sequence of segments, each of which is a smaller time
series, we can find that the two time series from the same
user usually have highly similar segments, e.g., the segments
between the two green vertical lines in (a) and (b) of Figure 1
(and 2). By applying a symbolic representation technique, i.e.,
Symbolic Aggregate Approximation (SAX) [12], we can trans-
form a time series into a string to facilitate pattern discovery and
comparison. The segments between the vertical lines in Figure
1 are converted to the same string aadd || aadc (formed by
two shorter strings each being transformed from a segment; ||
is the symbol for string concatenation). Similarly, the segments
between the vertical lines in Figure 2 are mapped to the same
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(a) (b)

Fig. 1: User ID 13’s x-axis acceleration time series for Circle gesture from 2 different trials

(a) (b)

Fig. 2: User ID 25’s x-axis acceleration time series for Circle gesture from 2 different trials

string acdc || acdb.
Intuitively, for the same gesture, the trials by the same user

in general are more likely to have segments that are alike
than the trials by different users. By focusing on segments,
more fine-grained and richer information can be considered
in the verification method, which we believe is helpful in
achieving high accuracy. And verification decisions (either
binary or probabilistic) are easier to apprehend. Our key idea
for improving authentication accuracy is to develop verification
methods based on segments of behavioral biometric time series,
which is very different from previous studies that only take the
whole time series into consideration.

In this paper, we present a new behavioral biometric au-
thentication method called SEGAUTH, which can be applied
to various gesture or motion based authentication scenarios.
SEGAUTH aims to achieve high accuracy by focusing on
each user’s distinctive behavior segments that appear frequently
across gestures to reduce the impact of dynamic nature in
performing a gesture on verification. In SEGAUTH, a time series
acquired from a gesture is first partitioned into segments via
sliding window and then transformed into a set of string tokens
in which the tokens representing distinctive, repetitive segments
are associated with higher genuine probabilities than those
tokens that are common across users. Collectively, an overall
genuine score can be calculated from all the tokens derived

from a gesture and used to determine the user verification out-
come. We have assessed the effectiveness of SEGAUTH using
4 different datasets and measured the accuracy of SEGAUTH
using metrics accuracy (ACC) and equal error rate (EER). Our
experimental results demonstrate that SEGAUTH can achieve
higher accuracy consistently than existing popular methods on
the evaluation datasets.

The rest of this paper is organized as follows: We present
the design of SEGAUTH in Section II and detail its evaluation
in Section III. We then discuss the factors affecting SEGAUTH
in Section IV. We briefly describe the related work in Section
V and conclude this paper in Section VI.

II. SYSTEM DESIGN

SEGAUTH is designed as a general approach to behavioral
biometric authentication especially gesture based authentica-
tion. SEGAUTH leverages the sensing data generated by a user’s
motion intended for authentication to verify the user’s identity.
Similar to other user authentication schemes, SEGAUTH first
builds a model for an enrolled user in the training phase and
later applies the model in the verification phase. Figure 3
depicts the general process and basic modules of SEGAUTH.
The illustration of Segmentation & Tokenization (S&T) is
adapted from [12]. The data acquisition module collects sensory
data through smart devices during authentication and outputs a
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Fig. 3: Overview of SEGAUTH

set of features {f1, f2, ..., fm} for each sample (either a training
one or a testing one), e.g., x, y coordinates of a finger tip on
a touch screen and their derived velocities. Each feature of a
sample is represented as a time series. In S&T phase, each
time series is segmented and transformed into its symbolic
representation, that is, a set of string tokens, which is detailed
in Section II-B. The set of n tokens for feature fi in a sample
is denoted as {Xi

1, X
i
2, ..., X

i
n}.

In model generation, string tokens from training samples are
stored in their respective databases. The tokens generated by
genuine samples are stored in the positive database while the
tokens generated by forgery samples are stored in the negative
database. With the two databases, the probability of a token
(i.e., a feature segment) being genuine (or forgery) can be
derived from given training samples. Considering that features
often differ in their capability of differentiating a genuine
user from imposters, each feature fi is assigned a weight wi
reflecting its distinguishability, which is derived based on the
verification equal error rates (EER) using single features.

The classification of SEGAUTH is straightforward. Let the
weights for features f1, ..., fm be w1, ..., wm. Given a testing
sample, SEGAUTH first applies the same S&T procedure to
generate tokens, then applies the Bayes’ theorem to compute
the probability of the sample being genuine (pi) based on each
feature (fi), and finally computes the sample’s genuine score G
using the formula G =

∑m
i=1 wi · pi. The testing sample will

be accepted as authenticated if G is equal to or greater than
the predefined threshold.

A. Data Acquisition

The data acquisition module is responsible for collecting sen-
sory data from motion sensors (e.g., touch sensor, accelerome-
ter, etc) in smart mobile devices during gesture performance
and exporting the time series of the features derived from
sensory data. Nowadays motion sensors are ubiquitous on
mobile devices and collecting motion data is well supported by
major mobile platforms. Given the diversity of mobile devices,
different types of sensory data may be collected. For example,
finger coordinates, pressure, and size can usually be gathered on
touch screen smartphones and tablets but they are not available
on wristbands.

The feature set of an authentication gesture usually contains
two parts: raw features directly from sensor readings (e.g.,
acceleration in x/y/z-axis) and derived features computed

from raw features (e.g., the first derivative of acceleration in
x/y/z-axis). Given the diversity of gestures for user verification
and availability of sensors, the set of features for behavioral
biometric authentication can vary in different authentication
systems. For example, TouchIn [24] employs x, y coordi-
nates, velocities, and accelerations, touch pressure, curvature,
direction, and hand geometry while MotionAuth [30] uses 3-
axis accelerations and angular accelerations, magnitude, angles,
and their first and second derivatives. Selection of features
for optimal authentication performance is dependent on many
factors including devices, sensors, and behavioral biometrics
and therefore is out of the scope of this paper.

B. Segmentation & Tokenization

SEGAUTH applies symbolic aggregate approximation (SAX)
method [12] to segment each feature’s time series and convert
those segments into strings. SAX is effective in transforming a
time series into symbolic representations, which reduces data
dimensionality and can significantly speed up data processing
such as comparison. Therefore, SAX is suitable for discovering
repetitive patterns from time series. It has been proven that the
distance measure in SAX symbolic representation space is to
lower bound the distance between the time series in the original
space. Refer to [12] for the detail of SAX and its applications.

For a time series T of length n, SAX first transforms the
data into the Piecewise Aggregate Approximation (PAA) [7]
representation and then symbolizes the PAA representation into
a discrete string of length β (typically β � n) with alphabet
size α. Before transformation, the time series is normalized to
make its mean and standard deviation as 0 and 1 respectively.
The SAX discretization produces symbols with equiprobability
by first determining the breakpoints that produce α equal-
sized areas under a N(0, 1) Gaussian curve and then mapping
PAA coefficients to SAX symbols based on those breakpoints.
The concatenation of all the symbols of PAA representation
forms a SAX string. In addition, trivial matches, which are
the adjacent identical strings, are removed from the generated
strings through numerosity reduction.

After string generation, the original time series is converted
to a string array (Assuming the array size is N , the number
of the generated strings). Next, a set of 2-grams (or bigrams)
is generated from those strings and these 2-grams become the
tokens. In general, 2-gram tokens can better capture a user’s
behavioral characteristic and differentiate users than unigrams
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(original individual strings). The S&T procedure is described
in Algorithm 1 and illustrated in Figure 3.

Algorithm 1 Procedure of Segmentation & Tokenization

Input: time series of a sample’s features (f1, f2, ..., fm)
. Let Ti be the time series of fi, Ti = {ti1, ..., tin}

Parameters: SAX alphabet size α, string length β,
Sliding window size γ

Output: Set of tokens Tok for the sample

1: for all Ti ∈ {T1, ..., Tm} do
2: Si ← {Sij : Sij = {tij , ..., tij+γ−1}, 1 ≤ j ≤ |Ti|−γ+1}
. Apply sliding window subsequence extraction to get set
of segments Si, |Ti| = n

3: for all Sij ∈ {Si1, ..., Sin−γ+1} do
4: Strij ← SAX(Sij , α, β) . Apply SAX to convert
Sij into a string

5: end for
6: Apply numerosity reduction to remove trivial matches
. Stri ← {Stri1, ..., Strik, k ≤ n− γ + 1}

7: Toki ← {Strij ||Strij+1 : 1 ≤ j ≤ k − 1}⋃
{Strij ||Strij+2 : 1 ≤ j ≤ k − 2}⋃
{Strij ||Strij+3 : 1 ≤ j ≤ k − 3}

8: end for
9: Tok← {Toki : i = 1, ...,m}

10: return Tok

There are several parameters, e.g., sliding window size (γ),
PAA size or string length (β), and SAX alphabet size (α) in
the procedure. The window size determines the length of a
time series segment being converted into a string; the PAA size
determines the number of letters in a string; and the alphabet
size is the total number of the letters of the alphabet used in
conversion. Normally, each letter corresponds to a range of
numerical values with equal probability in order to ensure the
fairness of alphabet conversion. The setting of those parameters
is discussed in Section IV-C.

C. Model Generation

In model generation, the tokens from a user’s genuine
training samples are stored into the positive database for that
user along with their frequency of occurrence in all genuine
training samples. And the tokens from that user’s forgery
training samples are stored into the negative database in a
similar manner. The probability of a token being genuine (i.e.,
from the authentic user’s motion) can be calculated based on
the information from the two databases. For instance, if a token
occurs p times in genuine samples and q times in forgery
samples, then its probability of being genuine is recorded
as p/(p + q). Therefore, if a string token occurs far more
frequently in genuine samples than in forgery samples, then
that token is more likely to be associated with the genuine user.
Building such a model for each user lays the foundation for the
next stage—classification. Table I exemplifies user information
stored in the databases.

TABLE I: Sample user information stored in databases

String Tokens GC* FC# Probability
AABC BCBA 24 2 92.3%
BBAA CABB 20 6 76.9%
BACA CBAC 12 12 50%
CAAA BCCC 4 15 21.1%

* GC refers to genuine count, # FC refers to forgery count
Verifying a testing sample as genuine or not relies on

the sample’s genuine score G =
∑m
i=1 wi · pi, where m is

the number of features, pi is the probability of the sample
being genuine determined solely by feature fi, and wi is fi’s
associated weight. Thus, deriving the weight of each employed
feature for each user is also performed in the model generation.
When multiple features are employed in user authentication,
it is common that those features differ in their capability of
differentiating genuine users from imposters. SEGAUTH adopts
a per-user feature weighting method by Snelick et al. [23], in
which a metric d is designed to calculate each feature’s weight
w for each user (u). The metric d for feature fi is defined as

di =
µi(gen)− µi(imp)√

(σi(gen))2 + (σi(imp))2
, i = 1, ...,m,

where gen and imp are the training sets for genuine samples
and forgery samples respectively, µi and σi represent the mean
and standard deviation of the probabilities of a sample being
genuine based on feature fi from u’s genuine or forgery training
samples respectively. The computation of probability based
on single feature is detailed in the next section. di measures
the difference of the probabilities between genuine samples
and imposter samples on feature fi. di becomes relatively
large if the classification based on fi can tell genuine samples
from imposter samples more accurately. The weight wi is then
calculated using wi = di/

∑m
i=1 di, i = 1, ...,m. Apparently,∑m

i=1 wi = 1. Basically, if a feature fi is more capable of
distinguishing genuine samples from forgeries then its weight
wi is larger.

D. Classification

SEGAUTH verifies a testing sample based on the sample’s
genuine score G. The genuine score is the weighted sum of the
probabilities of the testing sample being classified genuine on
each feature. SEGAUTH employs the naı̈ve Bayes classification
method in individual feature based classifications. Within the
framework of Bayesian classification, verifying whether a test-
ing sample Y with feature fi is genuine or not is achieved by
computing the probability of Y being genuine with the given
set of n tokens (denoted as X = {x1, ..., xn}) derived from
fi’s time series, i.e., P (Y = g|X) or simply P (g|X) where g
(and ¬g) represents the genuine class (and forgery class). If the
probability is equal to or greater than the predefined threshold,
then the testing sample Y is classified as genuine.

Assume y0 = ¬g and y1 = g. According to the Bayes’
theorem,

P (g|X) =
P (X|g) · P (g)

P (X)
=

P (X|g) · P (g)
P (X|g) · P (g) + P (X|¬g) · P (¬g)

.
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With the conditional independence assumption, we have
P (X1, ..., Xn|Y ) =

∏n
i=1 P (Xi|Y ), where X1, ..., Xn are

conditionally independent variables. Thus, we have

P (g|X) =
P (g) ·

∏
i P (xi|g)

P (g) ·
∏
i P (xi|g) + P (¬g) ·

∏
i P (xi|¬g)

.

A default genuine probability σ will be assigned to the token if
a token from a testing sample cannot be found in the databases.
In our evaluation σ is set to 0.5 as we find that the variation in
terms of overall accuracy with different σ (in range [0.2, 0.8])
is quite minor on the evaluation datasets.

III. EVALUATION

In this section we present the evaluation results of SEGAUTH
on the multiple datasets that have been used in previous studies.
The datasets, sample selection methods, evaluation metrics, and
evaluation results are detailed in the following.

A. Datasets

Considering availability, applicability, and representative-
ness, we selected 4 different datasets for evaluating SEGAUTH.
These datasets cover 3 types of behavioral biometric data,
i.e., 3-D motion gestures, 2-D unlock patterns, and 2-D tablet
signatures. The detail of the datasets is listed in Table II.

TABLE II: Datasets used in Evaluation

Dataset Category User # G # | F # *

uWave [13] 3-D motion gestures 8 70 | NA
MotionAuth [30] 3-D motion gestures 26 40 | NA
Pattern [4] 2-D unlock patterns 34 21 | 99
SUSIG [9] 2-D tablet signatures 94 20 | 10

*G and F refer to genuine samples and forgery samples for each user

The uWave and MotionAuth datasets are employed for 3-
D gestures evaluation. The uWave dataset consists of 8 hand
gestures, each of which has 70 samples by each user. The
samples were collected using Wii remote controller with only
accelerometer readings [13]. The MotionAuth dataset consists
of 4 arm gestures (circle, down, up, and rotation) from 26
users with 40 genuine samples per user per gesture [30]. Those
samples were collected using a smart watch with accelerometer
and gyroscope sensors. Although the uWave dataset was origi-
nally used for gesture recognition instead of authentication, we
include it to compare the accuracy that different verification
techniques can achieve.

For 2-D unlock patterns, we select the Android Unlock
Pattern dataset [4] as it is accessible and contains a relatively
large set of unlock patten samples collected from 34 users
each having 21 genuine samples and 99 skilled forgery samples
(each user contributing 3 forgery samples to every other user).
However, we encountered a few problems in data processing
following the description in [4]: 1) The dataset only contains
data for 34 users instead of 38 listed in the paper; 2) Not every
user has 21 valid samples. For example, 2 users only have 19
samples. Therefore, we have to remove another 9 users (from
the 34 users) who either are invalid based on the description

in [4] and metadata information in the dataset or have samples
less than the required number. In the end, we have 25 users in
the Pattern dataset and each user is associated with 20 genuine
samples and 72 skilled forgery samples.

Moreover, there is another subtle issue with the Pattern
dataset. A number of phones of different models were used
to collect data. Therefore, some users’ forgery samples are not
applicable in testing another user who used a different phone.
Based on the phone information, the 25 users are divided into
3 groups: 16 users in group one using a phone of the same
model, 4 users in group two using a different phone of the
same model, and the rest 5 users all using a different phone.
We only use the data from the 20 users in groups one and two
when calculating the accuracy. Therefore, a user in group one
(or group two) has 45 (or 9) valid skilled forgeries.

For 2-D tablet signatures, the SUSIG dataset [9] is chosen
since it is popular in signature verification research. The SUSIG
dataset contains signatures from 94 users with 20 genuine
samples and 10 skilled forgery samples for each user.

B. Sample Selection

The classification of SEGAUTH requires both genuine and
forgery samples. On all four datasets, we choose the same
number of forgeries as that of genuine samples for classifier
training. If selection of samples is random, we repeat the
same experiment 5 times to reduce the impact of random
selection and use the average of the results as the result of
that experiment.

Regarding selection of forgery samples, the uWave and
MotionAuth datasets have no skilled forgeries. Since all the
participants in their studies performed the same set of gestures,
a workaround is to make up a forgery using another user’s
sample of the same gesture, which was used in [30]. Therefore,
for each gesture, we pick genuine samples of other users as the
forgeries for the test user in the training phase of classification.
In terms of selection of genuine training samples, some studies
(e.g., [20], [30]) apply leave-one-out cross-validation method
which uses n− 1 out of n genuine samples for training, while
other studies (e.g. [18], [4]) select the first k samples based
on the order in which the data was acquired as the training
set. Both methods have been used in our evaluation and each
method is applied upon a particular dataset in order to compare
the results to those reported in the literature.

C. Evaluation Metrics

The metrics used in our evaluation include accuracy (ACC)
and equal error rate (EER). In this paper a true positive/negative
(TP/TN) refers to a genuine/forgery sample being correctly
accepted/rejected. And a false positive/negative (FP/FN) refers
to a forgery/genuine sample being incorrectly accepted/rejected.

ACC measures how well a binary classification test correctly
identifies a condition and is defined as the proportion of
true results (TPs and TNs) among the total number of cases
examined [15].

EER is a rate when the false negative rate (FNR) equals
the false positive rate (FPR) and is often used to measure the
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TABLE III: Features selected on the 4 datasets

System Raw Features Derived Features
uWave [13] 3-D acceleration

(A)
magnitude (M ), 3-D angle (θ),
1st derivatives of A, θ and M

MotionAuth
[30]

3-D acceleration
(A) & angular
acceleration (G)

magnitude (M ), 3-D angle (θ),
1st derivatives of A,G, θ and
M

Pattern [4] x, y coordinates velocities in x, y, magnitude
(M ), and 1st derivative of M

SUSIG [9] x, y coordinates velocities in x, y, magnitude
(M ), and 1st derivative of M

quality of an authentication system. FPR = (#FP)/(#FP + #TN)
and FNR = (#FN)/(#FN + #TP).

D. Evaluation Results

We apply SEGAUTH to each of the 4 datasets following
the evaluation procedure used by previous studies on the same
dataset and compare the results attained by SEGAUTH to the
ones reported in the literature.

Given the diversity of the datasets, we select different fea-
tures for different datasets. Our feature selection is guided by
the principle of using common features that can be easily
acquired or derived from ubiquitous motion sensors, e.g.,
accelerations, coordinates on a touch screen, velocity, etc. The
features we use for each dataset are listed in Table III. Our
feature selection can be further optimized for SEGAUTH to
achieve better results but we want to examine the capability of
SEGAUTH with a set of common features. Feature selection is
further discussed in Section IV-B.

1) Results of uWave Dataset: The uWave dataset consists
of 8 guestures, denoted as G1 to G8 and depicted in Figure
4 (a). The original study on the uWave dataset [13] does not
provide authentication results on the 8 gestures. We apply both
DTW (used in the original study for gesture recognition) and
SEGAUTH to authentication using the same set of data and
features. We use the leave-one-out method for training in both
DTW and SEGAUTH.

For each gesture, we first obtain the EER values of all 8 par-
ticipants when using DTW (and SEGAUTH) for authentication
and then calculate the average EER value. Figure 4 (b) depicts
the average EERs for the 8 gestures achieved by DTW and
SEGAUTH. We can clearly see that in general SEGAUTH can
achieve higher verification accuracy (i.e., smaller EERs) than
DTW, especially when the gestures are relatively simple (e.g.,
G3-G6).

According to [13], all 8 gestures in the uWave dataset are
hand movements. As hand gestures can be swift and subtle,
a person’s intrinsic motion characteristics in simple gestures
such as horizontal hand movements may be better captured
by SEGAUTH that focuses on motion segments than by the
methods eyeing the entire motion.

2) Results of MotionAuth Dataset: We apply the same leave-
one-out training method as the original study [30] does and
compare the performance of SEGAUTH against DTW and
Histogram methods used in [30] in terms of average user EER.
Figure 5 depicts the per-gesture result achieved by SEGAUTH

(a) 8 gestures (b) Comparison of EER values

Fig. 4: uWave dataset and its evaluation results

along with those archived by the Histogram and DTW methods
reported in [30]. Evidently, SEGAUTH outperforms the other
two on all four gestures. Aligned with the observation in
[30], SEGAUTH achieves higher accuracy with more complex
gestures. More interestingly, SEGAUTH is able to maintain high
accuracy for the relatively simple rotation gesture while DTW
and Histogram have a much bigger increase for average EER.

A deeper look into the SEGAUTH results reveals that by
using SEGAUTH 1) all participants on Circle gesture and nearly
90% of participants on Down and Up gestures achieve an EER
lower than 5%, and 2) 3 out of 4 gestures have no participants’
EERs higher than 10%. Those results are quite different from
the results in [30] and clearly demonstrate the effectiveness of
SEGAUTH in gesture based authentication.

Fig. 5: Comparison of DTW, Histogram, and SEGAUTH on the
MotionAuth dataset

3) Results of Pattern Dataset: For the Pattern dataset, we
apply the first k training method used in [4] to compare our
results with those reported in the original study [4] and evaluate
the performance of SEGAUTH in terms of FNR, FPR, and ACC.
The results, obtained with the genuine score threshold of 0.85,
are listed in Table IV. Through experiments we find that the
threshold of 0.85 renders a relatively balanced result in terms
of FNR and FPR. The differences on #TP+#FN and #TN+#FP
between SEGAUTH and DTW in Table IV are attributed to the
issues in the dataset as explained in III-A.

The results shown in Table IV clearly indicate that SEGAUTH
achieves a much lower FPR than DTW, which effectively
enhances the unlock pattern security as SEGAUTH blocks more
skilled attack attempts. Note that the results of SEGAUTH
are obtained only using x and y coordinates. The results
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TABLE IV: Comparison between SEGAUTH and DTW on
Pattern dataset (Format: SEGAUTH value [DTW value reported
in [4]])

#TP #FN #TN #FP ACC
246 [398] 54 [92] 588 [852] 68 [231]

87% [77%]
FNR: 18% [19%] FPR: 10% [21%]

could be further improved by using other measurements such
as touch size, pressure and speed that appear useful in user
authentication [4]. This also indicates that SEGAUTH is more
capable of differentiating different users with similar behaviors.

4) Results of SUSIG Dataset: Regarding the SUSIG dataset,
we use the first k training method to compare our result with
those reported in the literature. Specifically, we first train the
classifier using a user’s first 5 genuine samples and 5 randomly
selected forgery samples, and then test the user’s remaining
genuine samples and forgery samples to derive his/her FNR,
FPR, and EER values. We repeat the experiment 5 times and
use the averages of those values as the final result.

Table V lists the EER values achieved by different studies
and the technique they used, include DTW, Fourier descrip-
tors, and Histogram. Without special optimization in feature
selection, SEGAUTH still outperforms the other techniques with
a much higher accuracy (with 0.98% EER). As signatures
are more personal and complex than other types of motion
gesture, more distinctive behavior segments can be generated
from a user’s signature and therefore help improve verification
accuracy significantly.

TABLE V: Comparison of EERs on the SUSIG dataset

System Technique EER

[9] DTW 3.30
[8] DTW 3.06
[31] Fourier Descriptors 6.20
[19] Histogram 6.08
[19] Histogram (with weight) 4.37
SEGAUTH Proposed Method 0.98

IV. DISCUSSION

In this section, we discuss several factors that can affect
the SEGAUTH’s accuracy and effectiveness including size of
training set, feature selection, and setting of SAX parameters.

A. Size of Training Set

The size of training set affects both usability and accuracy
of an authentication system. A larger training set usually helps
generate more accurate classification models and therefore
improves verification accuracy. However, a larger training set
also means longer time for model creation and often asks for
more training samples from a user, which potentially reduces
users’ interest and degrades the system’s usability.

We study the impact of training sample size on verification
accuracy using MotionAuth and Pattern datasets since both of

(a) MotionAuth dataset (b) Pattern dataset

Fig. 6: Impact of training sample size on accuracy

user number and samples per user in those two datasets are
relatively large. We apply the first k sampling method to both
datasets. We vary the number of genuine (and forgery) training
samples from 5 to 10, 15, 25 for MotionAuth dataset, and from
5 to 7, 9, 11, 13, 15 for Pattern dataset and display the change
in verification accuracy in Figure 6. Note that the x-axis and
y-axis in Figure 6 (a) differ from those in Figure 6 (b). From
6 (a), it is obvious that increase of sample size correlates with
decrease of average user EER attained by SEGAUTH for all
4 gestures on the MotionAuth dataset. For the Pattern dataset,
the improvement on accuracy, TPR and TNR by increasing the
training sample size can also be observed but it becomes minor
and even slightly negative with increase of sample size.

B. Feature Selection

We use the MotionAuth dataset as an example to demon-
strate the variation of different features in their capability
of distinguishing genuine users from imposters. We perform
single feature based verification for each feature and depict the
average EERs in Figure 7. The first 10 features (f1-f10) are
linear accelerations, angular accelerations, and angles in three
dimensions, and magnitude. The second 10 features and last
10 features are the first and second derivatives of the first 10
features, respectively. Figure 7 evidently manifests that features
differ in their distinguishability. Overall, the raw and derived
features have better distinguishability than their first derivatives,
which are better than the second derivatives in accuracy.

SEGAUTH uses the first 20 features in this study while all 30
features were used in the MotionAuth study [30]. We further
calculate the average EERs of the 4 gestures using only the
first 10 features and compare the average EERs achieved by
SEGAUTH with 10, 20, 30 features for each gesture in Figure
8. We can easily notice that the accuracy with the 20 features
is very close to that with all 30 features but is evidently smaller
than the one using the first 10 features for every gesture. Since
less features mean less computation and runtime, selecting 20
features for classification appears to be a better tradeoff between
accuracy and efficiency than the other two alternatives. We note
that feature selection is important for achieving high accuracy
but optimal feature selection is out of the scope of this paper.

C. SAX Parameters

SEGAUTH leverages the SAX method to effectively reduce
the dimensions of original time series and convert the continu-
ous time series into discrete strings. Here we discuss the setting
of sliding window size, PAA size, and SAX alphabet size.
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Fig. 7: Average user EER obtained from MotionAuth dataset
using a single feature for classification

Using sliding window is necessary to represent the origi-
nal time series comprehensively and therefore is applied in
SEGAUTH. However, it is difficult to set the size of sliding
window. There is no standard value for reference. In addition,
since the window size determines the length of a segment of
the original time series to be converted, it should not be set too
large or too small. Suppose the windows size is γ and the length
of the time series is n, then the number of converted strings will
be n− γ +1. Given n, a larger γ produces fewer SAX strings
and vice versa. Conceptually, the larger the window size, the
less likely a user’s subtle motion characteristic will be captured.
On the other hand, the smaller the window size, the more likely
noise will be introduced in SAX string generation. Based on
our empirical study, the window size being half the length of
the raw time series (i.e., γ = n/2) often deliver reasonably
good results. Therefore, we set the window size approximately
to n/2 in practice.

The PAA size β defines the length of a SAX string, i.e.,
the number of symbols in a SAX string. With PAA size β,
a segment of one window size γ is equally divided into β
sub-fragments and the length of each sub-fragment is γ/β.
This parameter is often correlated with the window size. In
our experiments, we set the PAA size to 5 or 6 and found the
settings work well on different datasets.

The SAX alphabet size α determines the maximal number
of unique symbols that may be used in a SAX string. Different
from the PAA size β that decides the segmentation horizontally
(on x-axis), the alphabet size α determines the segmentation
of a time series vertically (on y-axis). SAX partitions the time
series on the y-axis into α fragments with equal probability.
Usually the first fragment is assigned symbol A, and then
symbol B, ... and so on. Based on our empirical study, 4, 5
or 6 appear to be a good choice for the alphabet size in that a
large value of α can make fragments too narrow to remove the
noise introduced in data collection.

V. RELATED WORK

A biometric authentication system verifies a person based
on either his or her physiological traits (e.g., fingerprint, face,

Fig. 8: Comparison of accuracy with different number of
features on the MotionAuth dataset

iris, etc) or behavioral characteristics (e.g., finger or hand
movements) [28], [33]. Biometric authentication is more user
friendly in nature than those approaches relying on some-
thing you know (e.g., passwords) and something you have
(e.g., security tokens). Physiological biometrics is subjected to
various attacks [16], [25] and their accuracy can be largely
affected by environmental factors such as illumination and
background noise [2]. In contrast, behavioral biometrics appears
more robust to theft or mimicry attacks.

Behavioral biometric authentication has been an active re-
search area for many years. Early behavioral biometrics studies
mainly focus on keystroke dynamics and mouse movements.
As mobile devices are becoming ubiquitous, recent years have
witnessed growing research interest in applying behavioral bio-
metrics to mobile authentication. Many behavioral biometrics
studies have been conducted based on phone touch operations
[5], [29], [32], PIN and unlock pattern operations [4], [11],
online signatures [19], [10], multitouch gestures [18], [21], [22]
and three-dimensional gestures [13], [30], [28].

Unlock pattern mobile authentication has been widely de-
ployed on smartphones and tablets. In [26], the security of
unlock patterns was found to be comparable to 3-digit PINs. In
[4], the authors analyzed multiple unlock patterns on Android
unlock grid and achieved an accuracy of 77% using DTW.

Similar to unlock pattern, online signature authentication is
also well studied. In [31], Yanikoglu and Kholmatov proposed
a Fourier Descriptors authentication scheme to obtain an EER
of 6.20% on the SUSIG dataset [9]. In [19] the EER for
the same dataset is reduced to 4.37% with the proposed two
dimensional histogram method. The highest accuracy on the
SUSIG dataset reported in [31] is the EER of 3.30% achieved
by using the DTW method. Ren et al. proposed a critical
segment based online signature verification system to secure
mobile transactions on multi-touch mobile devices and tested
their approach extensively with 25 users over six months [17].

Our work differs from most existing approaches for be-
havioral biometric authentication. SEGAUTH utilizes symbolic
aggregate approximation (SAX) method [12], which is able
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to transform time series data into symbolic representations
to reduce the dimensionality/numerosity of the original time
series. Compared to other dimensionality reduction methods,
SAX retains many features of original time series such as time
and shape. The string token generated based on the converted
strings can effectively capture users’ intrinsic behavior charac-
teristics. Moreover, SEGAUTH employs a simple but effective
classification method, Naive Bayes classification, which has
been widely used in a variety of classification tasks such as
email spam filtering and text classification [14], [27], [6].

VI. CONCLUSION

In this paper, we have presented a segment-based approach
to behavioral biometric authentication namely SEGAUTH.
SEGAUTH is unique in that it emphasizes on verifying a user
based on his or her distinctive and repetitive segments of a
gesture instead of the whole gesture used by previous methods.
SEGAUTH leverages the symbolic aggregate approximation
and Bayes’ theorem to effectively and efficiently segment a
time series, transform a segment into a string token, derive
the genuine score of a gesture, and verify the user. We
have evaluated SEGAUTH using 4 different datasets collected
from 3 different types of behaviorial biometric authentication.
SEGAUTH consistently achieves higher verification accuracy
than the results reported by previous studies with all the
4 datasets. Our experimental results clearly demonstrate that
SEGAUTH is a general and effective approach to behavioral
biometric authentication.
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