
Remote Live Forensics for Android Devices

Jonathan Ming
Department of Engineering and Computer Science

Azusa Pacific University
Azusa, CA, USA

jming13@apu.edu

Mengjun Xie
Department of Computer Science

University of Arkansas at Little Rock
Little Rock, AR, USA

mxxie@ualr.edu

Abstract—This research focuses on developing a new forensic
mechanism to integrate Android devices into existing remote live
forensic frameworks. Our mechanism allows incident responders
and forensic data analysts to collect detailed usage data from a
fleet of mobile devices in a way currently only available on
computers. A prototype system named DroidGRR was developed
to integrate Android devices into the GRR Rapid Response
forensic framework. Analysis of our prototype shows that usage
data can be successfully collected from a remote Android device
through the GRR framework. Our findings indicate that the
proposed solution is attainable and can provide new and rich
data to incident responders, corporate IT administrators, and
forensic analysts regarding the usage of mobile devices.

Index Terms—mobile security, Android, incident response,
mobile forensics, data collection, monitoring

I. INTRODUCTION
Mobile devices, as they become more powerful, are

becoming increasingly prevalent, especially in the U.S. [1]. A
2014 survey shows that roughly 80% of U.S. employees have
a smartphone with Internet access, and 49% have a tablet [2].
As mobile devices gain prevalence, they also have access to
more sensitive data than ever before. However, the security
measures for protecting those data have not yet adapted to
match such a wide adoption of mobile devices. This research
aims to push forward these security measures, focusing on the
scalable remote live data collection and incident response
mechanism for mobile devices.

II. BACKGROUND
If a smartphone or tablet becomes compromised, incident

responders and forensic analysts currently have quite limited
options to examine the compromised device remotely. During
this research, nine existing mobile device forensic tools [3, 6-
14] were examined. We found that only one of them, FireEye
Mobile Threat Prevention, provided the ability to remotely
collect forensic data from a mobile device without rooting or
jailbreaking [3]. The others either required physical access to
the device or required insecure modifications to the mobile
device’s operating system. An ideal mobile forensic solution
does not suffer from these problems.

The solution sought by this research aims to achieve the
following features: 1) requiring no physical access to the
device, 2) requiring no rooting of the device, and 3) being able
to access live, relevant data while the phone’s internal storage

is encrypted. In addition, this solution should leverage and be
integrated into existing forensic frameworks, in order to be
scalable and easily adopted, and be able to provide aggregate
analytics across both mobile and non-mobile devices.

III. RELATED WORK
Two existing forensics projects are particularly relevant to

this research. One is GRR Rapid Response [4] and the other is
DroidWatch [5]. Some characteristics of these two projects are
highlighted as follows.

1) GRR Rapid Response “An incident response framework focused on remote
live forensics”

 Initially developed at Google, was open-sourced
 Requires one central Linux server; supports numerous

Windows, Mac OS X, and Linux clients
 Largest known open-source deployment has

approximately 30,000 clients installed
2) DroidWatch A prototype monitoring app designed to collect data

from Android devices
 Initially developed by Justin Grover in 2013 as an

open source project, no further development since then
 Not integrable with existing forensic frameworks

IV. DESIGN
To facilitate integration, the prototype developed for this

research (named DroidGRR after the style of DroidWatch)
applies the model already employed by GRR Rapid Response.
This model follows a request-and-response format (see Fig. 1).
First, a framework administrator or data analyst accesses the
central server, which then sends requests to a selected client or
group of clients. After that, the clients collect the data from
their respective host machines and respond to the server with
the requested data in an asynchronous manner.

Fig. 1 Request-Response Design Model
In order to match this model, DroidGRR is required to

behave as a standard GRR client. In other words, it has to
listen for and respond to requests issued by the GRR server.
This design marks the primary difference between DroidGRR

2016 IEEE Conference on Communications and Network Security (CNS): IEEE CNS 2016 - Posters

978-1-5090-3065-1/16/$31.00 ©2016 IEEE

and DroidWatch. DroidWatch follows a simple monitoring
model designed by Grover, in which interested data are
collected continuously and sent to a server automatically [5].
While that approach is straightforward and easy to implement,
it is incompatible with GRR’s operational model. Therefore,
Grover’s design model was discarded for this research in order
to facilitate integration with GRR.

V. IMPLEMENTATION & EVALUATION
During this research, a prototype system of DroidGRR was

developed. The screenshot of the DroidGRR application is
shown in the left figure. Due to time constraint, the entirety of

the model was not implemented.
At the time of this writing,
DroidGRR has functioning
watchers, can communicate
with the GRR server, can enroll
with the server as an available
client, and can poll the server
for flow requests.

Because flow request
handling and response delivery
could not be implemented in the
available time, a complete
evaluation of the model side by
side with a standard GRR client
could not be performed.
However, the portion of the

implementation that was completed did shed light onto the
design model and serves well as a proof of concept.
DroidGRR, even in its current state, demonstrates the
feasibility of live, remote usage data collection from mobile
devices and the feasibility of integrating mobile devices into
existing live forensic frameworks without compromising the
device’s security (via rooting).

VI. CHALLENGES
The primary challenge of this research was fashioning the

solution to be integrable with existing forensic frameworks. In
order to be integrated with GRR Rapid Response, the
prototype has to behave and communicate with the server in
the same manner GRR’s existing PC clients behave and
communicate, which was difficult to implement in Android.

A secondary challenge of this research was dealing with
the inherent limitations of the Android operating system. In
particular, retrieving device logs was a problem in this area.
Logcat application activity logs can provide invaluable insight
into the inner workings of the device. However, as of Android
4.1 installed apps are denied permission to view Logcat. The
only way to circumvent this prohibition on log access is to root
the device, which is undesirable for this solution.

VII. CONCLUSION
DroidGRR’s success at collecting data from an Android

device and enrolling with a GRR server clearly indicates that
mobile device integration into existing forensic frameworks is

attainable. Even though DroidGRR’s full implementation has
not been completed, the developed prototype and functions are
sufficient to validate the design described in Section IV. This
design will serve as a model for our further development of
scalable incident response tools for mobile devices. It can also
serve as a model for including mobile devices into existing
forensic frameworks.

Moreover, after implementing DroidGRR and being more
familiar with GRR Rapid Response framework and Android
operating system, it became clear to us that continuing to use
and extend the request-response model will not only work, but
also enable entirely new categories of data to be added to the
GRR framework (e.g., records of dubious MMS messages
containing malicious code). These new categories of data
would augment GRR’s incident response capabilities by
enabling responders to evaluate mobile devices as well as
traditional computers when considering attack vectors.

ACKNOWLEDGMENT
This work was supported by the Research Experiences for

Undergraduates (REU) Program of the National Science
Foundation under Award Number 1359323.

REFERENCES
[1] M. Anderson, “Technology Device Ownership: 2015,” Pew

Research Center, October 2015.
[2] J. Harter, S. Agrawal, and S. Sorenson, “Most U.S. Workers

See Upside to Staying Connected to Work,” Gallup, Inc., April
2014. http://www.gallup.com/poll/168794/workers-upside-
staying-connected-work.aspx

[3] FireEye, Inc., “FireEye Mobile Threat Prevention Data Sheet.”
https://www.fireeye.com/content/dam/fireeye-
www/global/en/products/pdfs/fireeye-mobile-threat-
prevention.pdf

[4] “GRR Project FAQ,” GRR Rapid Response Documentation
https://github.com/google/grr-doc/blob/master/faq.adoc

[5] J. Grover, “Android forensics: Automated data collection and
reporting from a mobile device,” Digital Investigation, vol. 10
Supplement, pp. S12-S20, August 2013.

[6] Katana Forensics, “LANTERN Device Acquisition and
Analysis.” https://katanaforensics.com/products/lantern/

[7] Guidance Software, “Encase Forensic Product Overview,” p. 4.
[8] M. Shannon, “F-Response and Android,” F-Response.

https://www.f-response.com/blog/f-response-and-android
[9] AccessData, “Mobile Phone Examiner Plus.”

http://accessdata.com/solutions/digital-forensics/mpe
[10] NowSecure, “NowSecure Forensics.”

https://www.nowsecure.com/forensics/
[11] Open Source Android Forensics, “OSAF Community Site.”

http://osaf-community.org/home.html
[12] Evidence Talks, “SPEKTOR Forensic Intelligence.”

http://www.remoteforensics.com/index.php/products/spektor
[13] Lisa Phifer, “How mobile device encryption works to protect

sensitive data,” TechTarget, March 2013.
[14] Heather Mahalik, “Open Source Mobile Device Forensics,”

http://www.nist.gov/forensics/upload/6-Mahalik_OSMF.pd

2016 IEEE Conference on Communications and Network Security (CNS): IEEE CNS 2016 - Posters

