
CamAuth: Securing Web Authentication
with Camera

Mengjun Xie∗, Yanyan Li∗, Kenji Yoshigoe∗, Remzi Seker†, Jiang Bian‡
∗ Department of Computer Science

University of Arkansas at Little Rock

Little Rock, AR 72204, USA

Email: {mxxie,yxli5,kxyoshigoe}@ualr.edu
† Department of Electrical, Computer, Software and Systems Engineering

Embry-Riddle Aeronautical University

Daytona Beach, FL 32114, USA

Email: sekerr@erau.edu
‡ Division of Biomedical Informatics

University of Arkansas for Medical Sciences

Little Rock, AR 72205, USA

Email: jbian@uams.edu

Abstract—Frequent outbreak of password database leaks and
server breaches in recent years manifests the aggravated security
problems of web authentication using only password. Two-factor
authentication, despite being more secure and strongly promoted,
has not been widely applied to web authentication. Leveraging the
unprecedented popularity of both personal mobile devices (e.g.,
smartphones) and barcode scans through camera, we explore a
new horizon in the design space of two-factor authentication. In
this paper, we present CamAuth, a web authentication scheme
that exploits pervasive mobile devices and digital cameras to
counter various password attacks including man-in-the-middle
and phishing attacks. In CamAuth, a mobile device is used as
the second authentication factor to vouch for the identity of
a use who is performing a web login from a PC. The device
communicates directly with the PC through the secure visible
light communication channels, which incurs no cellular cost and
is immune to radio frequency attacks. CamAuth employs public-
key cryptography to ensure the security of authentication process.
We implemented a prototype system of CamAuth that consists
of an Android application, a Chrome browser extension, and
a Java-based web server. Our evaluation results indicate that
CamAuth is a viable scheme for enhancing the security of web
authentication.

I. INTRODUCTION

Web has become the dominant interface for people to

conduct their daily businesses on the Internet or a corpo-

rate network. People use their PCs to check email, access

financial accounts, pay utilities bills, do online shopping,

retrieve electronic health records and so on, all through a web

browser. Web authentication stands as the first defense line to

secure everyone’s web accounts and online data. In general,

a user authenticates herself to a web application hosted on

a remote server by entering her username and password in

the application’s login page (either manually or automatically

through a password manager). Password has been the de
facto method for web authentication [1]. However, password

only authentication cannot provide sufficient protection as the

mechanism is prone to a variety of attacks including shoulder

surfing attack [2], password guessing attack [3], [4], [5], man-

in-the-middle (MITM) attack [6], phishing attack [7], [8], and

so on.

To improve web authentication security and facilitate pass-

word management, mainstream web browsers (e.g., Chrome,

Firefox, and Internet Explorer) have introduced built-in pass-

word managers. Standalone password managers [9] (e.g.,

1Password and KeePass) and web-based password managers

that run in a browser (e.g., LastPass, RoboForm, and Pass-

wordBox) have also become quite popular. However, a pass-

word manager alone does not offer sufficient security assur-

ance due to insecure computing environments at either local or

remote. Zhao and Yue showed that none of the browser built-in

password managers in mainstream web browsers could prevent

malware from stealing passwords in a PC environment [10].

Recent studies on web password auto filling [11] and web-

based password managers [12] reveal that there exist a num-

ber of serious vulnerabilities in popular password managers

that can be exploited to launch password attacks and render

disastrous consequences.

Recent years have witnessed frequent outbreak of data

breaches and password database leaks that occurred on promi-

nent websites such as LinkedIn [13], Yahoo! [14], and Gmail

[15]. Those password leaks endanger millions of people’s

data security not only on those websites but also on other

websites due to password reuse [16], [17]. To make matters

worse, attackers often launch MITM attack and phishing attack

to steal users’ passwords. The recent MITM attack against

Iranian Google users [6] demonstrates that even a user of

well maintained and hardened website might be subjected

to the MITM attack. According to [18], the total number

of unique phishing sites detected worldwide in Q1 2014 is

125,215, a 10.7 percent increase over Q4 2013. Although

TLS/SSL protocols can be applied to counter MITM and

phishing attacks, the security offered by HTTP over TLS/SSL

2015 IEEE 16th International Symposium on High Assurance Systems Engineering

978-1-4799-8111-3/15 $31.00 © 2015 IEEE

DOI 10.1109/HASE.2015.41

232

(HTTPS) is hinged on the validity of certificate [19] and the

actual implementation [20], [21], which unfortunately often

become the Achilles’ heel. In addition, HTTPS is simply not

available on many websites including governmental websites

(e.g., www.usa.gov and www.whitehouse.gov).

As password-only authentication is evidently inadequate,

two-factor authentication (TFA) has been strongly recom-

mended and promoted to improve web authentication security.

Special hardware based TFA solutions (e.g., SecurID and

smartcard) were introduced long time ago but never reach

general public. Aligned with the advancement of mobile

computing technologies in the past ten years, many mobile

device-assisted TFA schemes were proposed [22], [7], [23],

[24], where an assumed trustworthy mobile device becomes

the second factor in addition to the password. In practice,

SMS based (e.g., [25], [26]) and soft token based (e.g., [27])

TFA schemes that leverage cellphones especially smartphones

have been deployed. However, those schemes can incur costs

on mobile communication (cellular or WiFi) and usually rely

on mobile Internet, which may not always be available, for

completing authentication.

Leveraging the unprecedented popularity of mobile devices

(especially smartphones and tablets) equipped with built-in

cameras and omnipresent practice of barcode scans through

camera (e.g., snapping an ad in QR code, airport checking

in with a mobile boarding pass in QR code), we propose

CamAuth, a new TFA scheme for securing web authentication

on PC. CamAuth uses a mobile device (smartphone or tablet)

as the second factor to vouch for the user identity during

login. The trusted device directly communicates with the PC

through the visible light communication channels (established

using camera-display links), which are secure as they are short-

range, highly directional, fully observational, and immune to

radio frequency interference. When applying CamAuth to web

login, a user only needs to use her device to snap the barcode

(e.g., a QR code) on the webpage and let the PC webcam

capture the barcode generated by the mobile app for identity

attestation. The use of barcode scan not only simplifies user

action and secures information transfer but also makes the

user be fully aware of the authentication process. Moreover,

CamAuth has the following advantages:

1) The scheme requires no Internet connection for the

mobile device during authentication. Therefore, it incurs

no cost for the communications with the device.

2) The entire scheme is implemented at the application

layer. There is no requirement to modify either the PC’s

operating system (OS) or the device’s OS or firmware.

3) The scheme does not rely on SSL/TLS although the use

of SSL/TLS can further enhance the security.

We have implemented a prototype system of CamAuth that

consists of an Android application, a Chrome browser exten-

sion, and a Java-based web server. We evaluated our scheme

against a few other popular authentication schemes and also

conducted a small-scale usability study. Our evaluation results

indicate that CamAuth is a viable scheme for enhancing the

security of web authentication.

The rest of this paper is organized as follows: Section II

briefly describes related work. Sections III and IV detail the

design of CamAuth and its prototype implementation. Section

V presents the evaluation for CamAuth. section VI concludes

this paper.

II. RELATED WORK

Two-factor authentication (TFA) requires the presentation of

two or more authentication factors: something a user knows

(e.g., a password), something a user has (e.g., a secure token),

and something a user is (e.g., biometric characteristics). Using

two factors as opposed to one factor generally delivers a higher

level of authentication assurance. For example, passwords can

be combined with security tokens such as RSA SecurID that

implement one-time passwords or biometric characteristics

such as fingerprint. With the popularity of mobile phone, a new

category of TFA tools transforms a PC user’s mobile phone

into a token device using either SMS messaging [25], an inter-

active telephone call [26], or via a smartphone application [27].

A number of mobile device-assisted authentication schemes

[28], [7], [23], [24] were proposed for protecting a user

from either password stealing on an untrusted PC or phishing

attacks. In those schemes, mobile devices are assumed to be

trustworthy and able to perform certain computing operations

such as hashing.

Phoolproof [7] is a public-key based scheme for strength-

ening bank transaction system. User is required to choose a

bank site from the whitelist on the phone and then wait for

information exchange between the phone and PC. MP-Auth

[23] is a scheme that defends keylogger and phishing attacks

with a cell phone by moving password input to mobile end

and re-encrypting the username and password. Both Phool-

proof and MP-Auth require wireless connection and well-

implemented SSL/TLS. Czeskis et al. proposed PhoneAuth

[24], a smartphone-based TFA scheme to strengthen user

security in authentication. Despite that PhoneAuth and Ca-

mAuth share certain similarities, there also exist substantial

differences. First, PhoneAuth is built upon the origin-bound

certificate, which modifies TLS to realize strong client authen-

tication. The deployment of PhoneAuth requires modification

to current TLS, web browser, and smartphone firmware, which

is not practical for average users. Second, PhoneAuth relies

on Bluetooth for communications between the smartphone

and PC. However, Bluetooth can be subjected to a variety

of attacks. The Bluetooth module of smartphone has to stay

active all the time, which is certainly not power efficient for

mobile devices.

Recently camera-based communications have attracted

much attention given the increasing popularity of mobile

devices with one or more built-in cameras. Barcode scanning

is the primary application domain of camera-based commu-

nications. A barcode is an optical machine-readable repre-

sentation of information. There are two types of barcodes:

one dimensional (1D) barcodes and two dimensional (2D)

barcodes. Quick Response code (QR code) is a popular 2D

233

Fig. 1. Overview of CamAuth Authentication Process.

barcode. All major smartphone platforms support QR code

scanning either natively or through third-party applications.

As camera-based communications are short-range, highly di-

rectional, fully observational, and immune to electromagnetic

interference, they have been applied to security applications.

McCure et al. proposed an authentication scheme called

Seeing-is-Believing (SiB) [29], which leverages the unidirec-

tional visual channel between a 2D barcode and a camera

phone for simple authentication and demonstrative identifica-

tion of devices. Sexena et al. proposed a short-range device

pairing protocol, VIC (Visual authentication based on Integrity

Checking), which is also based on a unidirectional visual

channel [30]. Another wireless communication channel (e.g.,

Bluetooth) has to be used to complete the pairing process.

Neither SiB nor VIC is suitable for web authentication. Re-

cently, Xie et al. proposed CamTalk, a light based communi-

cation framework for bidirectional secure information transfer

between smartphones by leveraging smartphone’s display-

camera channel [31].

III. SYSTEM DESIGN

CamAuth is aimed to assure the security of web authen-

tication through a PC web browser in a cost-effective and

convenient manner. CamAuth uses a mobile device as the

trustworthy second authentication factor. During the CamAuth

authentication, the device is used to vouch for the user’s iden-

tity. Neither cellular network nor radio frequency (RF) wireless

network (e.g., WiFi and Bluetooth) is used for transferring

the device’s vouch, which avoids various RF attacks. Instead,

CamAuth applies visible light communication (VLC) through

camera to take advantage of the security and convenience

offered by VLC.

Figure 1 depicts a normal authentication process through

CamAuth. The process consists of four interactions between

involved entities (i.e., user, PC, mobile device, and web

server1).

1) A user performs a web login through a web browser by

entering her username and password either manually or

automatically through a password manager on the login

webpage.

2) The web browser is activated to send the username and

password (or its hash value; pw is used to represent

1For presentation purpose, web application and web server are used
interchangeably in the paper unless otherwise noted.

either case for illustration purpose) along with a Diffie-

Hellman (DH) exchange request including its dynam-

ically generated DH public key to the remote server.

After validating the password, the server runs the DH

algorithm to derive the shared secret, denoted by OTP ,

and sends back its identity vouch request and its DH

public key.

3) The browser first computes the shared secret based on

the received message and then encodes the request with

the hash value of the shared secret into a barcode and

renders it on the webpage. After scanning the barcode,

the CamAuth app on the mobile device verifies the

request and vouches for the user’s identity using public-

key cryptography. The vouch message is encoded into

another barcode, rendered on the screen, and captured

by the PC’s webcam.

4) The vouch message is transferred to the server. If the

validation of the vouch succeeds, the server will gener-

ate an authentication token (usually a session cookie),

encrypt the token with the shared secret, and send it

back to the browser, which completes the authentication

process.

In this section, we first describe the assumptions and threat

model. Then, we detail the process of CamAuth registration

and authentication, followed by security analysis. Fallback

mechanism, which is always on and can be used when

CamAuth authentication is not applicable, is discussed in the

end.

A. Assumptions and Threat Model
As CamAuth relies on camera-display links for communi-

cations between the mobile device and the PC, we assume

that the mobile device has a back-facing camera, which is

universal for today’s smartphones and tablets, and that the

PC is equipped with a webcam, which is also quite common

especially for laptops. We assume that there is an Internet

connection between the PC and the web server. However,

no network connection (either wired or wireless) is required

for the mobile device during authentication. HTTPS is not

required for the CamAuth authentication. We assume that the

user can perform web login from different PCs (e.g., one at

home and one at workplace) but always uses the same mobile

device (her smartphone) for authentication.
We assign the adversary the following capabilities. The

adversary can eavesdrop network traffic and launch a phishing

234

attack or MITM attack between the user’s PC and the remote

server (no MITM attack between the mobile device and the PC

due to short-range VLC). The adversary can compromise the

CA that has issued a TLS/SSL certificate to the target web

server or steal the server’s TLS/SSL private key if HTTPS

is used by the server. We assume that the operating system

of the user’s device is secure and the CamAuth mobile app

is securely protected by either a password, a PIN, a draw

patten, or a biometric. The adversary can either obtain the

user’s device or gain her web account password but not both.

Similarly, we assume that the web server can be breached

and the adversary can steal either the password database or

the server’s private keys for CamAuth but not both (e.g., they

are stored separately). Malware is assumed to be able to steal

user passwords from PC. Note that the denial-of-service (DoS)

attack targeting either the network or the end systems and the

session hijack attack are out of the scope of this work.

TABLE I
TABLE OF NOTATIONS

U, pw User ID and password (or password hash value)

S ID of web application

Uk , Up User U’s public key and private key

Sk , Sp Web application S’s public key and private key

g, p
Public prime base and prime number for

Diffie-Hellman (DH) key exchange

DHU·S
k , DHU·S

p
User U’s DH public key and private key for DH

exchange with S

DHS·U
k , DHS·U

p
Application S’s DH public key and private key

for DH exchange with U

|| Concatenation

h(·) a cryptographic hash function

Ek(), Dk() Symmetric encryption and decryption with key k

Ek(), Dp() Pubic-key encryption with k and decryption with p

B. CamAuth Registration

A user has to register her mobile device with the web

application prior to the use of the device. We assume that the

user conducts the registration on the authentic website (i.e., no

phishing attack) and there is no attack during the registration.

To register the device, the user logs into the web application

from the mobile device directly through the mobile app, and

submits the public key Uk generated at the device onto the

server. The server will store Uk along with the user’s identity

U. The device will also retrieve the application’s public key Sk
and securely store it with the application’s identity S and user’s

identity U in the device. The user’s public key pair (Uk, Up) is

generated during the registration while the application’s public

key is generated during its deployment (i.e., pre-generated) and

shared with all its users.

This registration is a one-time process per web application

and device. The exchange can be done either remotely through

the cellular network or locally through technical support. By

doing so, the device becomes a trusted device by the web

application. After the registration, the user needs to download

and install the CamAuth web browser extension on the web

browser in order to perform CamAuth authentication.

C. CamAuth Authentication

Figure 2 depicts the detail of the CamAuth authentication

protocol. Once the CamAuth browser obtains the username,

password and indication of using CamAuth (assume the user

has a smartphone at hand that has been registered), the

extension will start a Diffie-Hellman (DH) key exchange with

the target server. The browser sends to the server the username

(U) and password (pw) along with the DH public information

(g, p) and dynamically generated public key (DHU·S
k).

When the server receives the request, it first verifies the

username and password. After successful verification, the

server S generates its DH public key based on g, p and its DH

private key DHS·U
p and computes the shared secret, denoted

by OTP S. Then, the server generates a vouch request V RS,

asking for the attestation by the device associated with that

user account. The request V RS contains the identity of the

web application (S), the expiration time of this request (T)2,

and the hash value of S||U||T ||h(h(OPT S)) encrypted by the

application’s private key Sp. After that, the server composes

M2 that consists of V RS, the server’s ID S, and its DH public

key (DHS·U
k), and sends it back.

As soon as the browser receives M2, it will strip DHS·U
k off

the message to compute the shared secret OTPU. Next, the

browser composes M3 by concatenating S, V RS, and the hash

value of OTPU, and encodes M3 into a barcode. Then, the

barcode is rendered on the webpage through HTML waiting

for the user to snap it.

Upon capturing the code, the CamAuth mobile app de-

codes the message and decrypts V RS using stored S’s public

key Sk. The device first verifies the origin (S) and checks

freshness (T) based on the decrypted content, then com-

putes h(S||U||T ||h(h(OTPU))) (U can be obtained from

stored information), and finally compares the hash value with

h(S||U||T ||h(h(OTP S))) decrypted from V RS. If the origin

is not correct, or the message is old, or the hash values do not

match, the app will generate an error message notifying the

user of the suspicious vouch request and abort the authenti-

cation. If the request passes those checks, the app will create

the vouch M4 for U by encrypting h(S||U||T ||h(OTPU)) with

its private key Up. The result is encoded into a barcode and

rendered on the device’s screen.

The browser obtains M4 through the PC’s webcam and

forwards it to the server. The server independently computes

h(S||U||T ||h(OTP S)) and compares the value with the de-

crypted M4. If equal, the server will generate an authentication

token (usually a session cookie that includes the information

of both communication parties, unique number for the current

session and time). Otherwise, an authentication failure notifi-

cation will be generated and sent back. The server composes

M5 by encrypting the token with OTP S and sends it to the

browser. Once the browser successfully decrypts M5 using

OTPU, the authentication is completed.

2We only assume a loose time synchronization here, which usually is not
an issue for server and mobile devices.

235

Mobile Device PC Server

user login generate g, p,DHU·S
k

M1 = {U||pw||g||p||DHU
k } verify U and pw

compute DHS·U
k and OTP S

V RS = ESp(S||T ||h(S||U||T ||h(h(OTP S))))

compute OTPU M2 = {DHS·U
k ||S||V RS}

DSk
(V RS), check S, T M3 = {S||V RS||h(OTPU)}

h(S||U||T ||h(h(OTPU)))
?
= h(S||U||T ||h(h(OTP S)))

M4 = EUp(h(S||U||T ||h(OTPU))) forward M4 DUk
(M4)

?
= h(S||U||T ||h(OTP S))

DOTPU(M5) M5 = {EOTP S(auth token)}

M1

M2

M3

M4 M4

M5

Fig. 2. CamAuth Authentication Protocol. The sequence diagram starts with “user login” at the top and proceeds downwards if there is no outgoing message.

D. Security Analysis
The CamAuth authentication protocol can effectively

counter MITM and phishing attacks. Assume end systems are

well secured and fully functional. First, as the communication

channels between the PC and the mobile device are short-

sight, directional and fully observational visible light channels,

the threat of MITM attack between the PC and the device

can be eliminated. Even if the adversary can eavesdrop the

messages M3 and M4 by using a high-resolution camera, the

shared secret (either OTP S or OTPU) is protected by the

cryptographic hash function h().
Second, if there exists an adversary between the PC and

the server, the adversary can capture the password if the

network connection is not secure (e.g., either no TLS or faulty

TLS). To impersonate U, however, the adversary needs to

have U’s private key for vouch generation, which is securely

stored in U’s mobile device that is not in the possession of

the adversary. The adversary can launch a MITM attack to

intercept communications between the PC and the server. The

middleman conducts two Diffie-Hellman key exchanges, one

with the PC (resulting in OTPU) and the other with the server

(producing OTP S). However, the middleman can be detected

by the device and the server thanks to the protection provided

by their private key. The vouch request V RS (containing

h(h(OTP S))) is signed by S’s private key Sp. If the adversary

passes the genuine V RS but a forged DH public key (denoted

by DHE·U
k where E represents the adversary) to the PC, OTPU

computed by the PC based on DHE·U
k will be different from

OTP S, which will be detected by the device in comparing

hash values. Similarly, the vouch message M4 (containing

h(OTPU)) is signed by U’s private key Up. If the adversary

passes M4 to S, the difference between OTP S and OTPU

will also be detected by S.
If the adversary steals the mobile device, he still cannot

impersonate U without knowing U’s username and password

pairs. We assume that a user will request device revocation

(or deregistration) as soon as the user discovers the loss of her

authentication device, which is pretty standard practice when

a user’s smartphone gets lost. Even if the mobile device is

compromised by malware, the malware actually cannot infer

the shared secret OPT from either M3 or M4 as OPT is

protected by the cryptographic hash function h(). Note that

CamAuth does not address session hijack attacks in which

the authentication token is stolen from the PC after the

authentication completes but it can help curtail the attack by

periodical re-authentication.

E. Fallback Mechanism

CamAuth can fall back to current password only scheme if

a user does not have necessary hardware (e.g., smartphone

or webcam) or software (e.g., browser extension) support.

However, extra caution must be taken to prevent attackers

from exploiting the fallback. One fallback mechanism is to

use one-time password through email. If a user chooses to use

the traditional login via username and password (e.g., clicking

the special NormalLogin button provided by server), she will

be informed that a short-lived one-time password (OTP) has

been sent to her preset email address (the email server must

be different from current login web server). For login, the user

has to enter the password again with the OTP before it expires.

Although this mechanism is not as secure as CamAuth, it is

still better than password only thanks to the wide deployment

of TLS for webmail (e.g., Gmail and Outlook). The server

could also treat login sessions through the fallback mechanism

differently from CamAuth login sessions. For example, the

server could limit the functions that are accessible to sessions

made by the fallback.

IV. PROTOTYPE IMPLEMENTATION

We have implemented a prototype system of CamAuth that

consists of a web browser extension, a smartphone application,

and a simple web server that understands CamAuth protocol.

The browser extension is developed under the Google Chrome

(version 32) environment due to its popularity and security

design. Strong isolation is enforced in Chrome to achieve

secure communications. For example, extensions are isolated

from the JavaScript code embedded in the webpage and

also from other extensions (except for the extensions using

236

(a) (b)

Fig. 3. Screenshots of CamAuth authentication using the prototype system. (a) The screenshot shows that a QR code is generated from the identity vouch
request message and rendered in a pop-up webpage, waiting to be snapped by the mobile device. (b) The screenshot shows that the PC webcam is capturing
the QR code of the vouch generated by the device and rendered on its screen.

message passing API). The browser extension for CamAuth

is responsible for obtaining input data, conducting Diffie-

Hellman key exchange, encoding and rendering barcode, and

so on. We use QR code for the barcode in the prototype and

generate QR code through a JQuery plugin. The extension has

over 200 lines of JavaScript code, excluding the libraries.

The CamAuth mobile application is developed on Android

4.1 and compatible with Android 4.x and upward platforms.

The application is responsible for device registration and

CamAuth authentication. The application includes all the nec-

essary QR code functions (e.g., decoding and encoding) using

ZXing 2.0 library, and cryptographic functions (e.g., cryp-

tographic hashing, encryption and decryption) using Bouncy
Castle Java API. In total, this application has over 300 lines

of Java code.

We also developed a CamAuth-aware Java-based web

server. A number of Java Servlets were implemented to realize

the core functionality of CamAuth. Once the servlet that

handles OTP generation receives the DH exchange message,

it will generate its own DH keys and compute the OTP, which

is saved into the database temporarily in order to be compared

to the OTP derived by the extension afterwards. A few pieces

of JavaScript code are generated and injected into the login

page by the Servlets to capture the QR code on the device

screen using PC webcam and to decode the code and send the

decoded message to the server. The implementation for the

server contains over 200 lines of Java code.

Figure 3 shows two screenshots of the Chrome browser

with the CamAuth extension when a user is logging into the

CamAuth-aware web server. The screenshots were captured

on a laptop that has a built-in webcam. If the intended

website is CamAuth aware, a yellow block at the right end

of the address bar (next to the bookmark star) will show

up and the SecureLogin button will be highlighted. After

the user inputs her username and password (either manually

or through a password manager) and clicks the SecureLogin
button, the webcam viewfinder (assume the webcam is allowed

to be accessed) will appear along with a three-step graphical

CamAuth usage guideline rendered at the lower part of the

page to aid user’s login. In the first step, the user clicks the

yellow block (the CamAuth extension icon), which triggers

the QR code of the vouch request to pop up, as shown in

Fig. 3(a). In the second step, the user scans the QR code via

the device’s back facing camera. After the CamAuth mobile

app completes the vouch, a QR code will be rendered on the

device’s display with a beep. In the last step, the user flips the

device to let the PC webcam scan the QR code, as illustrated

in Fig. 3(b). The webcam viewfinder helps a user position

her device for barcode scan. If both password and identity

vouch are accepted, the user is logged in and directed to the

homepage; otherwise a failure page will be presented.

V. EVALUATION

We first evaluate CamAuth using the web authentication

assessment framework proposed by Bonneau et al. [1]. We

compare CamAuth with passwords, a most popular TFA

scheme—Google 2-step verification (2SV) [27], and a rele-

vant mobile device based TFA scheme—PhoneAuth (in strict

mode) [24]. The comparison results are shown in Table II.

In terms of usability CamAuth is highly comparable to

2SV and PhoneAuth. As barcode scanning using smartphone

is already widely used, we grant Easy-to-Learn and quasi

Easy-to-Use to CamAuth according to the definition of those

benefits [1]. We believe that CamAuth (barcode scanning as

user action) is easier to use than 2SV (PIN typing as user

action) even though both have the same rating. We grant

quasi Infrequent-Errors to CamAuth, the same as all others,

as barcode scanning from either smartphone or PC is fairly

accurate and the camera performance keeps improving. We

believe that CamAuth and 2SV (and PhoneAuth) are at the

same level (‘s’) for Easy-Recovery-from-Loss as their recovery

mechanisms are much similar: users need to revoke the old

device, install the app on the new device and register the new

device.

237

TABLE II
COMPARISON OF CAMAUTH, PASSWORDS, GOOGLE 2-STEP VERIFICATION (2SV), AND PHONEAUTH (IN STRICT MODE).

Usability Deployability Security

Scheme S
ca

la
b
le

-f
o
r-

U
se

rs

N
o
th

in
g
-t

o
-C

ar
ry

Q
u
as

i-
N

o
th

in
g
-t

o
-C

ar
ry

E
as

y
-t

o
-L

ea
rn

E
as

y
-t

o
-U

se

In
fr

eq
u
en

t-
E

rr
o
rs

E
as

y
-R

ec
o
v
er

y
-f

ro
m

-L
o
ss

A
cc

es
si

b
le

N
eg

li
g
ib

le
-C

o
st

-P
er

-U
se

r

S
er

v
er

-C
o
m

p
at

ib
le

B
ro

w
se

r-
C

o
m

p
at

ib
le

M
at

u
re

N
o
n
-P

ro
p
ri

et
ar

y

R
es

il
ie

n
t-

to
-P

h
y
si

ca
l-

O
b
se

rv
at

io
n

R
es

il
ie

n
t-

to
-T

ar
g
et

ed
-I

m
p
er

so
n
at

io
n

R
es

il
ie

n
t-

to
-T

h
ro

tt
le

d
-G

u
es

si
n
g

R
es

il
ie

n
t-

to
-U

n
th

ro
tt

le
d
-G

u
es

si
n
g

R
es

il
ie

n
t-

to
-I

n
te

rn
al

-O
b
se

rv
at

io
n

R
es

il
ie

n
t-

to
-L

ea
k
s-

fr
o
m

-O
th

er
-V

er
ifi

er
s

R
es

il
ie

n
t-

to
-P

h
is

h
in

g

R
es

il
ie

n
t-

to
-T

h
ef

t

N
o
-T

ru
st

ed
-T

h
ir

d
-P

ar
ty

R
eq

u
ir

in
g
-E

x
p
li

ci
t-

C
o
n
se

n
t

U
n
li

n
k
ab

le

Passwords y y y y s y y y y y y y s y y y y
Google 2-step verification y y s s s s y y s y y y y y y y
PhoneAuth – strict y y y s s y s s s y y y y y s y y y y y s
CamAuth y y s s s s s s s y y y y y s y y y y y y

Note: ‘y’ means the benefit is offered and ‘s’ means the benefit is somewhat offered. The scores for passwords, 2SV, and PhoneAuth are from [24].
However, we change the scores for Scalable-for-Users, Mature and Easy-Recovery-from-Loss for PhoneAuth as we disagree with the authors’ rating.

Evaluation on the deployability of CamAuth is mainly based

on what changes to current systems would be required for

deploying CamAuth. As CamAuth can be implemented at

userland and application layer and requires no modification to

OS kernel, device driver, or lower-layer protocols, the deploy-

ability of CamAuth is closely comparable to PhoneAuth. We

rate CamAuth quasi Accessible as senior or disabled people

might feel inconvenient when performing barcode scanning.

On security, CamAuth is resilient to physical observation,

targeted impersonation, throttled/unthrottled guessing as the

adversary still cannot log in without the user’s device even

if he obtains the password. It is quasi resilient to internal

observation because both the device and the PC have to be

compromised by the malware (i.e., internal observer). As the

device has a separate key pair for each web application (i.e.,

verifier), CamAuth is resilient to leaks from other verifiers and

is also unlinkable. It is certainly resilient to phishing and theft

due to two-factor authentication. At last, CamAuth requires

no third party (even no need of TLS/SSL) but explicit user

consent (barcode scanning).

Performance of our scheme, i.e., time spent on login pro-

cess, certainly affects user experience. As CamAuth involves

two barcode scanning in a login, we are interested in its

performance. We conducted an experiment to measure the

average time of a CamAuth login performed by an average

user who is familiar with CamAuth. We used a laptop that was

bought in late 2011 and has an embedded 2-megapixel webcam

and a Samsung S3 smartphone with a 8-megapixel rear camera

for the experiment. Five users were involved in the experiment

and each performed CamAuth login ten times. On average,

it takes 172 milliseconds (ms) for the browser extension to

generate a QR code. The smartphone spent 3.4 seconds on

average from launching the app, scanning the QR code, to

generating and rendering the vouch QR code. The average time

from PC webcam scanning the code to login success is 2.9

seconds. We believe that fast-paced advancement of camera

(e.g., higher resolution and faster auto-focus) and smartphone

technologies will significantly improve the performance and

user experience in near future.
To further understand the usability of CamAuth and how it

is perceived by average people, we also conducted a small-

scale usability study. We recruited 12 volunteers (eight males

and four females) from the campus and asked each of them

to test our prototype and complete a short survey. We readily

acknowledge that our usability study is limited and bias exists.

However, this preliminary assessment still provides useful

information for us to further improve our work.
Among 12 testers, ten are in age range 20 and 30 and the rest

two are in 30 and 40. Most of the testers are college students.

One third of them received some level of computer security

related training. And three quarters of them uses smartphone

every day. We believe this group of people represents the user

base that is most likely to try and adopt new technologies

such as CamAuth. When asked if they are concerned about

password authentication, two thirds of the testers are either

very concerned or concerned.
Two questions regarding user technical background are:

“Are you familiar with QR code?” and “Are you familiar with

web browser extension?” For the first question, four testers

answered that they like it and use it frequently and another

four responded that they know the technology well and use it

sometimes. The rest four indicated that they are not familiar

with QR code. The answers to the second question follow a

similar distribution.
Three questions regarding CamAuth usability were asked:

238

“Do you think CamAuth is easy to learn and use?”, “Do you

have the perception of the increase of security brought by

CamAuth?”, and “Will you use CamAuth to log into email

or social network account if recommended?” For the first

two questions, all the testers answered yes while all but one

answered yes for the last question. Among all the testers,

seven expressed that they need little time to learn and the rest

five responded that learning does take some time. Although

all but one showed willingness of using CamAuth, seven of

them indicated that they will use CamAuth when they feel the

environment is not secure, which suggests that more study on

human cognition of cyber “secure” environment is necessary

in order to design usable authentication schemes.

VI. CONCLUSION

In this paper we presented CamAuth, a camera based TFA

scheme that augments the security of web login from PC.

Leveraging the high market penetration of mobile devices

and pervasive barcode scanning through camera, CamAuth

realizes two-factor authentication through passwords plus bar-

code scanning using user’s mobile device. The public-key

cryptography and secure visible light communications ensure

that CamAuth can effectively defeat password stealing attacks

including man-in-the-middle and phishing attacks. CamAuth

requires no modification to existing network protocols and

operating system of PC and mobile device. Our prototype

system and preliminary user study demonstrate the viability

of the scheme. In future, we plan to conduct an extensive

usability study to better understand the impact of using bar-

code scanning for web login on average users physically and

psychologically.

ACKNOWLEDGMENT

We thank Liang Hao for his contribution in the early

development of the prototype.

REFERENCES

[1] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, 2012, pp. 553–567.

[2] F. Tari, A. A. Ozok, and S. H. Holden, “A comparison of perceived
and real shoulder-surfing risks between alphanumeric and graphical
passwords,” in Proceedings of the Second Symposium on Usable Privacy
and Security, ser. SOUPS ’06, 2006, pp. 56–66.

[3] D. C. Feldmeier and P. R. Karn, “Unix password security - ten
years later,” in Proceedings of the 9th Annual International Cryptology
Conference on Advances in Cryptology, 1990, pp. 44–63.

[4] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proceedings of the 12th ACM Conference
on Computer and Communications Security, 2005, pp. 364–372.

[5] J. Bonneau, “The science of guessing: Analyzing an anonymized corpus
of 70 million passwords,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12, 2012, pp. 538–552.

[6] S. Sengupta, “In latest breach, hackers im-
personate google to snoop on users in iran,”
http://www.nytimes.com/2011/08/31/technology/internet/hackers-
impersonate-google-to-snoop-on-users-in-iran.html, August 2011.

[7] B. Parno, C. Kuo, and A. Perrig, “Phoolproof phishing prevention,”
in Proceedings of the 10th International Conference on Financial
Cryptography and Data Security (FC 2006), 2006, pp. 1–19.

[8] C. Yue and H. Wang, “Bogusbiter: A transparent protection against
phishing attacks,” ACM Trans. Internet Technol., vol. 10, no. 2, pp.
6:1–6:31, 2010.

[9] K.-P. Yee and K. Sitaker, “Passpet: convenient password management
and phishing protection,” in Proceedings of the second symposium on
usable privacy and security (SOUPS ’06), 2006, pp. 32–43.

[10] R. Zhao and C. Yue, “All your browser-saved passwords could belong to
us: a security analysis and a cloud-based new design,” in Proceedings of
the third ACM conference on Data and application security and privacy,
ser. CODASPY ’13, 2013, pp. 333–340.

[11] D. Silver, S. Jana, D. Boneh, E. Chen, and C. Jackson, “Password
managers: Attacks and defenses,” in Proceedings of the 23rd USENIX
Security Symposium (USENIX Security 14), Aug. 2014, pp. 449–464.

[12] Z. Li, W. He, D. Akhawe, and D. Song, “The emperor’s new password
manager: Security analysis of web-based password managers,” in Pro-
ceedings of the 23rd USENIX Security Symposium (USENIX Security
14), Aug. 2014, pp. 465–479.

[13] Z. Whittaker, “6.46 million linkedin passwords leaked online,”
http://www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leaked-
online/79290, June 2012.

[14] D. Hamilton, “Yahoo’s password leak: What you need to know (faq),”
http://www.cnet.com/news/yahoos-password-leak-what-you-need-to-
know-faq/, July 2012.

[15] J. Leyden, “Leak of ’5 meelllion gmail passwords’ creates se-
curity flap,” http://www.theregister.co.uk/2014/09/11/gmail password
leak flap/, Sept. 2014.

[16] D. Florêncio and C. Herley, “A large-scale study of web password
habits,” in Proceedings of the 16th international conference on World
Wide Web, ser. WWW ’07, 2007, pp. 657–666.

[17] J. Bonneau, “Measuring password re-use empirically,”
http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-
use-empirically/, Feb. 2011.

[18] Anti-Phishing Working Group (APWG), “Phishing attack trends re-
port: Q1 2014,” http://docs.apwg.org/reports/apwg trends report q1
2014.pdf, Anti-Phishing Working Group (APWG), June 2014.

[19] S. Schoen and E. Galperin, “Iranian man-in-the-middle attack against
google demonstrates dangerous weakness of certificate authori-
ties,” https://www.eff.org/deeplinks/2011/08/iranian-man-middle-attack-
against-google, August 2011.

[20] L. Bershidsky, “Heartbleed’s password heartbreak,”
http://www.bloombergview.com/articles/2014-04-11/heartbleed-shows-
open-source-needs-your-cash, Apr. 2014.

[21] M. Riley, “Nsa said to exploit heartbleed bug for intelligence for
years,” http://www.bloomberg.com/news/2014-04-11/nsa-said-to-have-
used-heartbleed-bug-exposing-consumers.html, Apr. 2014.

[22] M. Wu, S. Garfinkel, and R. Miller, “Secure web authentication with
mobile phones,” in DIMACS Workshop on Usable Privacy and Security
Software, 2004.

[23] M. Mannan and P. van Oorschot, “Leveraging personal devices for
stronger password authentication from untrusted computers,” Journal
of Computer Security, vol. 19, no. 4, pp. 703–750, 2011.

[24] A. Czeskis, M. Dietz, T. Kohno, D. Wallach, and D. Balfanz, “Strength-
ening user authentication through opportunistic cryptographic identity
assertions,” in Proceedings of the 2012 ACM conference on Computer
and communications security, ser. CCS ’12, 2012, pp. 404–414.

[25] “Mobile-otp: Mobile one time passwords,” http://motp.sourceforge.net/.
[26] I. Duo Security, “Duo security: Two-factor authentication made easy,”

https://www.duosecurity.com/.
[27] Google, “Google 2-step verification,” http://www.google.com/landing/

2step/.
[28] D. Balfanz and E. W. Felten, “Hand-held computers can be better smart

cards,” in Proceedings of the 8th USENIX Security Symposium, August
1999, pp. 15–24.

[29] J. M. McCune, A. Perrig, and M. K. Reiter, “Seeing-is-believing: Using
camera phones for human-verifiable authentication,” in Proceedings of
the 2005 IEEE Symposium on Security and Privacy, 2005, pp. 110–124.

[30] N. Saxena, J. E. Ekberg, K. Kostiainen, and N. Asokan, “Secure device
pairing based on a visual channel: Design and usability study,” IEEE
Trans. Info. For. Sec., vol. 6, no. 1, pp. 28–38, Mar. 2011.

[31] M. Xie, L. Hao, K. Yoshigoe, and J. Bian, “Camtalk: A bidirectional
light communications framework for secure communications on smart-
phones,” in Proceedings of the 9th International Conference on Security
and Privacy in Communication Networks (SecureComm’13), 2013, pp.
35–52.

239

