
Isoflat: Flat Provider Network Multiplexing and
Firewalling in OpenStack Cloud

Ruipeng Zhang, Mengjun Xie, Li Yang
Department of Computer Science and Engineering

The University of Tennessee at Chattanooga
Chattanooga, Tennessee, USA

smj793@mocs.utc.edu, mengjun-xie@utc.edu, Li-Yang@utc.edu

Abstract—Networking is one of the key enablers of cloud
computing and its security is essential for multi-tenant clouds.
As a widely used open source solution to cloud computing,
OpenStack allows computing resources to connect to the physical
network infrastructure through provider networks for perfor-
mance and reliability considerations. However, OpenStack users
are stuck with either VLAN provider networks that are complex
to configure and manage or flat networks that are not isolated
and have the limitation on interface multiplexing. To address
this problem, in this paper, we propose a new mechanism
called Isoflat, which extends OpenStack’s ability for creating flat
provider networks with both configuration simplicity and flexible
isolation capability. Our evaluation results show that a provider
network with Isoflat can achieve similar network performance as
a flat or VLAN provider network. Our results also show that the
Isoflat firewall has much less impact on throughput performance
than security group.

I. INTRODUCTION

With the increasing popularity of big data and cloud com-
puting, network sharing and isolation problems are receiving
growing attention. It is essential for cloud service providers,
especially Infrastructure-as-a-Service (IaaS) providers, to as-
sure their tenants of relatively isolated network environments
regarding data and performance, because a tenant has little
control over how other tenants behave to the shared underlying
physical infrastructure.

A number of existing approaches to network isolation such
as VLAN (Virtual LAN) and VRF (Virtual Routing and For-
warding) Lite do not scale well in the context of commercial
clouds where tens of thousands of tenants coexist [1]. They are
also difficult for private or home cloud deployment because
of their complex configuration or a number of requirements
on networking devices. Software approaches such as overlay
networking and tunneling offer a better solution to the scaling
issue, but integrating them could bring technical complica-
tions and communication overhead [2]. Therefore, a scalable,
flexible, lightweight, and easy-to-configure network isolation
approach is more practical and acceptable for users with
demands for provider network security.

OpenStack is a widely used open source solution to man-
aging cloud computing infrastructures including data center
networks. For direct access to the underlying network in-
frastructure, OpenStack offers flat (non-VLAN) or VLAN
provider networks to its tenants. Although VLAN provider
networks support network isolation, they inherit the scalability
limitation and configuration complexity from VLAN. Flat

provider networks, on the other hand, are easy to configure
but lack isolation capability. OpenStack also poses a limitation
on the number of flat provider networks that can be created
over a single network interface. Usually, only one flat provider
network will be created if each compute node has only one
physical network interface for provider networks. It is ideal to
remove that limitation and offer network isolation capability
for flat provider networks while retaining their advantages.

In this paper, we propose Isoflat (Isolated flat provider
network), a new mechanism for managing flat provider net-
works and enabling firewall function for OpenStack clouds.
Isoflat tackles OpenStack’s limitation on creating multiple flat
provider networks on a single network interface by utilizing
software switches and virtual interfaces. Isoflat’s multiplexing
capability lowers OpenStack’s requirement on the infrastruc-
ture as fewer interfaces are needed to create the same number
of provider networks. In the meantime, Isoflat supplements
OpenStack’s network isolation capability by introducing built-
in firewall functionality to provider networks. Isoflat firewalls
work in a way similar to OpenStack security group. How-
ever, its packet filtering runs close to network interfaces,
which results in less overhead compared to the security group
since the number of interfaces to be filtered is relatively
smaller. Moreover, Isoflat can update its firewall rules when
the provider network configuration changes, which reduces
security risks caused by firewall configuration inconsistency.
Finally, Isoflat firewall rules can only be modified by the
network owner so that other tenants cannot bypass Isoflat
firewalls by tampering rules as they could with their security
groups.

Our evaluation results show that Isoflat’s interface multi-
plexing only incurs negligible throughput performance over-
head for TCP traffic compared to existing flat network or
VLAN solutions when the provider networks share the same
physical interface. In terms of firewall processing, Isoflat
firewall exhibits significant throughput improvement compared
to the security group.

The rest of this paper is organized as follows: We briefly
introduce necessary background information in Section II.
We then present the design of Isoflat in Section III and its
implementation in Section IV. We detail the evaluation of
Isoflat in Section V. We describe related work in Section VI
and conclude this paper in Section VII.

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

II. BACKGROUND

OpenStack and Neutron. OpenStack includes a series
of services for creating different types of cloud resources,
orchestrating cloud resources, and monitoring resource usage.
As a networking service for OpenStack, Neutron provides
networking infrastructure including switches, routers, and fire-
walls to computing devices by utilizing software-defined net-
working (SDN) technologies. This paper presents an extension
to current Neutron capabilities for creating provider networks
and setting up firewalls.

RouterInternet

External Net Tenant Net

Provider Net

Hypervisor A

Hypervisor BCloud Controller

Switch

Fig. 1: Simplified view of OpenStack networks

Provider Network. There are two types of OpenStack
networks managed by Neutron: provider network and tenant
network. A tenant network, as its name suggests, acts within
a single OpenStack tenant and is isolated from other tenants.
Tenant network isolation is usually realized through overlay
network protocols such as Virtual Extensible LAN (VXLAN)
and Generic Routing Encapsulation (GRE).

Unlike tenant networks, OpenStack provider networks are
integrated with existing physical networks. By using provider
networks, computing resources can directly access physical
network infrastructure for better performance and reliability.
OpenStack currently supports VLAN (IEEE 802.1Q tagged)
and flat (untagged) provider network types. Provider networks
that directly connect to exterior network spaces also serve as
external networks, whereby tenant traffic can be routed to the
outside world. In addition, administrators can build self-service
networks from provider networks where computing resources
are only exposed externally by floating IP addresses and NAT.
Figure 1 depicts a simplified view of the scope as well as
connectivity of tenant and provider networks in an OpenStack
environment.

Bridges and Ports. Figure 2 [3] and Figure 3 [4] depict
the networking components and connectivity in an OpenStack
compute node (similar in other compute nodes if multiple
compute nodes exist) with two VLAN provider networks using
Open vSwitch (OVS) and Linux bridge mechanism drivers
respectively. The Neutron port connecting to a Nova instance
or a virtual network device is an abstraction of the TAP inter-
face that is written by a VM or a networking service process.
Neutron also employs software switches such as Linux bridge
and OVS to organize networks and it provides packet filtering
on these switches through iptables or OpenFlow rules.

When driven by the Linux bridge mechanism driver, Neu-
tron connects computing resources to a provider network by
plugging the provider network interface to the Linux bridge
that manages TAP ports. The connection establishment is a bit

Compute Node

Linux Bridge - Provider Networks
Components and Connectivity

Provider network 1
VLAN 101

Instance 1

Linux Bridge 1
brq

DHCP
Namespace 1

qdhcp

Metadata
Process

veth

veth

tap
eth0

iptablesPort
tap

tap

Port
tap

Port
Sub-Interface

2.101

Instance 2

Linux Bridge 2
brq

DHCP
Namespace 2

qdhcp

Metadata
Process

veth

veth

tap
eth0

iptables Port
tap

tap

Port
tap

Port
Sub-Interface

2.102

Interface 2

VLAN 101
VLAN 102

Provider network 2
VLAN 102

Provider network
Aggregate

Physical Network
Infrastructure

Internet

Fig. 2: OpenStack provider networking with Linux bridge

Compute Node

Open vSwitch - Provider Networks
Components and Connectivity

Provider network 1
VLAN 101

Instance 1

DHCP
Namespace 1

qdhcp

Metadata
Process

veth

Instance 2

DHCP
Namespace 2

qdhcp

Metadata
Process

veth

VLAN 101
VLAN 102

Provider network 2
VLAN 102

Provider network
Aggregate

Physical Network
Infrastructure

Internet

Linux Bridge
qbr

iptables

Linux Bridge
qbr

iptables

OVS Provider Bridge
br-provider

 OVS Integration Bridge
br-int

Port
qvb

Port
qvb

Port
qvo

Patch
int-br-provider

Patch
phy-br-provider

Port
qvo

Interface 2

Port
Interface 2

tap
eth0

tap

tap
eth0

tap

Port
tap

Port
tap

Port Port

ve
th

veth

Internal VLANs

VLAN 101
VLAN 102

Fig. 3: OpenStack provider networking with Open vSwitch

more complicated with Open vSwitch. In this case, Neutron
introduces an integration bridge and several provider bridges.
An integration bridge is used for internal VLAN to tag (or
untag) the network traffic from (or to) the instances. A provider
bridge is used to swap internal VLAN tags with actual VLAN
tags (if VLANs are used) and pass packets to a physical
interface. To connect computing or networking devices to a
provider network, Neutron creates a pair of patch or Veth
(Virtual Ethernet) ports and attach them to their corresponding
integration bridge and provider bridge. This pair of ports acts
as the two ends of a cable to enable network traffic to flow
from one end to the other.

Security Group. Security group is a network security
feature provided by most cloud providers. One security group
may contain one or multiple security group rules, which define
the source, destination, protocol type and direction of the

allowed network traffic from/to a virtual instance [5]. By
associating computing resources with security groups rules,
users can set up virtual firewalls in hypervisors.

OpenStack’s security groups are implemented through fire-
wall drivers that utilize Netfilter or OpenFlow for packet
filtering. When a security group is updated, Neutron refreshes
the corresponding firewall rules deployed on the hypervisors
through Neutron ML2 (Modular Layer 2) agents. The firewall
drivers loaded by the agents are responsible for translating
security group rules to Netfilter or OpenFlow rules and apply-
ing them to corresponding network interfaces. These firewall
rules are port based and they are applied to inbound traffic to
and outbound traffic from a VM instance. The default action
for a security group is to deny packets that do not match any
security group rules.

III. SYSTEM DESIGN

Isoflat aims at 1) enabling multiple flat provider networks
on a single network interface and 2) providing layer 3 and
layer 4 isolation for those provider networks. In this section,
we discuss Isoflat software architecture, network model, and
firewall design in detail.

A. Isoflat Architecture and Workflow

The architecture of Isoflat is shown in Figure 4. Isoflat ex-
tends Neutron’s functionality. It consists of a client extension,
a service plugin, and an agent extension in Neutron’s subsys-
tems. The Isoflat client extension supplies a management CLI
(Command-Line Interface) to the Isoflat firewall. Commands
can be issued by administrators from a client remotely through
REST (REpresentational State Transfer) API. The Isoflat ser-
vice plugin, which resides in the Neutron server, listens on
the Isoflat REST API endpoints for Isoflat commands. It also
stores changes made to the firewall in the Neutron database
and dispatches SDN operations to the Isoflat agents through
RPC (Remote Procedure Call). Isoflat plugin agents, which
run on hypervisors, are responsible for multiplexing a network
interface and deploying packet filtering rules through Isoflat
firewall drivers.

The workflow of Isoflat is illustrated in Figure 5. Prior to the
deployment of Isoflat, the administrator needs to specify bridge
interface to provider network mapping in a configuration file
in a way similar to configuring a normal flat provider network
in OpenStack. The only difference is that a user can assign
multiple provider networks to the same bridge in Isoflat.
During deployment, Isoflat agents will read the mapping,
create virtual network interfaces, and connect them to the
Neutron managed bridges, which is depicted as 1© in Figure 5.
Later, if the owner of a created provider network wants to
create or delete a firewall rule, she will need to send a request
from the Isoflat client extension. The request will be directed
to the Isoflat service plugin and then delegated by the Isoflat
plugin agents. The agents will find the corresponding network
interfaces through the mapping and then update the associated
firewall rules. This user interaction process is denoted as 2©
in the figure.

REST API

RPC

SDN Service

Switching

Firewalling

Isoflat Plugin
Agent

Hypervisor

Command
Passing

OpenStack Controller

Database
Isoflat Service

Plugin

OpenStack Client

Isoflat Client
Extension

Fig. 4: Isoflat architecture

Isoflat Service
Plugin

Administrator

Isoflat Plugin
Agent

Virtual
Interfaces

Configuration File

Multiplex interfaces1

Manage firewall rules2

Isoflat Client
Extension

Isoflat Plugin
Agent

Virtual
Interfaces

Configuration File

Multiplex interfaces1

Manage firewall rules2

Manage firewall rules2

Hypervisor 1 Hypervisor 2

HTTP
RPC

Fig. 5: Isoflat’s workflow during initialization and user interaction

B. Network Model

To tackle the limitation of setting up multiple flat provider
networks on a single network interface NICS , Isoflat employs
a technique called network interface multiplexing, through
which Isoflat creates multiple virtual network interfaces
NICV that Neutron can bind to and build provider networks
upon. Figure 6 and Figure 7 depict our proposed network
models (in one compute node) with interface multiplexing for
OVS-based and Linux bridge-based Neutron deployment cases
respectively. In our design, we assume that the bridge BRGS ,
which would be used as the sole flat provider network bridge in
a common OpenStack deployment using flat provider network,
has already been created and that the physical interface NICS

connecting to the physical infrastructure has been attached to
the bridge. By searching the bridge to network mapping in the
configuration file, Isoflat agents can figure out the number of
provider networks to be supported by BRGS and create the
same number of virtual interface (e.g., veth) pairs (NICV).
Next, the agents connect the Neutron managed bridges (e.g.,
brq in Figure 7) to BRGS using those NICV pairs and update
the bridge mapping in the Neutron ML2 plugin configuration.
If the OVS driver is used, Isoflat will create the same number
of provider bridges BRGP (in Figure 6) and connect NICV

Compute Node

Isoflat Linux Bridge
BRGS

Open vSwitch - Provider Networks
Components and Connectivity

Provider network 1
192.168.1.0/24

Instance 1

DHCP
Namespace 1

qdhcp

Metadata
Process

veth

Instance 2

DHCP
Namespace 2

qdhcp

Metadata
Process

veth

Provider network 1
Provider network 2

Provider network 2
192.168.2.0/24

Provider network
Aggregate

Physical Network
Infrastructure

Internet

Linux Bridge
qbr

iptables

Linux Bridge
qbr

iptables

OVS Provider Bridge
BRGP1

 OVS Integration Bridge
br-int

Port
qvb

Port
qvb

Port
qvo

Patch
int-br-p1

Patch
phy-br-p1

Port
qvo

NICS

tap
eth0

tap

tap
eth0

tap

Port
tap

Port
tap

Port Port
ve

th

veth

Internal VLANs

OVS Provider Bridge
BRGP2

Patch
phy-br-p2

Port
NICV2

Patch
int-br-p2

Port
NICV1

Port
NICV2

ebtables

Port
NICV1

ve
th

veth

Fig. 6: OpenStack provider networking with Isoflat using Open
vSwitch driver

Compute Node

Linux Bridge - Provider Networks
Components and Connectivity

Provider network 1
192.168.1.0/24

Instance 1

Linux Bridge 1
brq

DHCP
Namespace 1

qdhcp

Metadata
Process

veth

veth

tap
eth0

iptablesPort
tap

tap

Port
tap

Instance 2

Linux Bridge 2
brq

DHCP
Namespace 2

qdhcp

Metadata
Process

veth

veth

tap
eth0

iptables Port
tap

tap

Port
tap

Provider network 1
Provider network 2

Provider network 2
192.168.2.0/24

Provider network
Aggregate

Isoflat Linux Bridge
BRGS

ebtables

Internet

Port
NICV1

Port
NICV2

Port
NICV1

Port
NICV2

NICS

Physical Network
Infrastructure

ve
th

veth

Fig. 7: OpenStack provider networking with Isoflat using Linux
bridge driver

to them. After that, data links between VM instances and the
physical interface NICS are established.

With network interface multiplexing, multiple flat provider
networks can be created while Neutron’s logic of associ-
ating one provider network to one network bridge remains
unchanged, since each provider network still binds to one
network bridge. Moreover, all provider network traffic still
goes through the original interface NICS thanks to the NICV

pairs and bridge BRGS .

C. Provider Network Firewall
The network interface multiplexing also provides an oppor-

tunity for building firewalls at the provider network level. As
each pair of NICV builds a tunnel between a BRGP (or
brq) and BRGS , the interface NICV on BRGS for a given
provider network can see all the network traffic from/to that
provider network in the hypervisor where it resides. Hence, we
can apply firewall rules to network traffic of a provider network
passing through the virtual interface. The filter implementation
depends on the underlying network driver (e.g., Linux bridge
or Open vSwitch). For Linux bridge-based deployment, the
Netfilter is a good choice to filter packets through the virtual
interfaces. For Open vSwitch-based deployment, OpenFlow is
an appropriate tool for constructing complex packet filters.

To build an implementation-agnostic firewall, Isoflat uses
firewall rules that contain key layer 3 and layer 4 properties
such as protocol type and destination IP address space to
match and filter network traffic. Those properties identify the
source and/or destination, protocol type and port numbers of
the packets to be filtered. Isoflat firewall enforces no restriction
on traffic by default with the rationale that interruption to
existing tenants should be minimized and tenant owners should
be given full control as to what traffic to block. Upon receiving
new firewall rules, Isoflat agents will translate them into
Netfilter rules or OpenFlow table entries and deploy them
on the target node(s) using the corresponding firewall driver.
As an Isoflat firewall rule only applies to one flat provider
network, the provider network’s NICV will also become a
constraint in the translation results so that the firewall driver
will filter packets for the correct provider network.

The instance placement does not affect the effectiveness of
Isoflat firewalls on packet filtering between provider networks.
Packets that originate from one provider network to another
have to pass the Isoflat Linux bridge BRGS even if the two
communicating instances reside in the same node. If the Linux
bridge driver is used, each provider network has a separate
Neutron managed provider bridge brq; Any packet sending
from one provider network to another has to travel through
the intermediate bridge BRGS . When the OVS driver is used,
a packet P will be tagged with an internal VLAN tag once it
enters the OVS integration bridge br-int; The internal VLAN
tag will be used to forward the packet to the correct OVS
provider bridge BRGP ; And the packet eventually passes the
BRGS . Therefore, in both cases, the Isoflat firewall rules will
be applied to packets flowing from one provider network to
another.

IV. IMPLEMENTATION

We have implemented an Isoflat prototype for OpenStack
Pike with Neutron version 12.0. The code base of Isoflat
consists of about 1,300 lines of Python code1. Our current
Isoflat agent implementation only supports OVS-based Neu-
tron deployment. Implementation for other network models
can be easily derived from the current implementation.

Isoflat consumes a separate configuration file from Neutron
to look up for BRGS to provider network mapping. The

1Isoflat’s source code is available at https://github.com/ppoffice/isoflat

configuration file should be set accessible to only OpenStack
administrators. Based on the mapping, Isoflat will first gener-
ate veth pairs and bridge interfaces and then map them to the
flat provider networks as described in Section III. The updated
bridge-to-network mapping is saved to the same configuration
file that is later loaded by the ML2 agents for creating provider
networks.

We chose Netfilter as the firewall driver for Isoflat in our
implementation. Although iptables is a widely used firewall
application based on Netfilter in Linux, our evaluation found
that it has limitations in distinguishing network traffic direction
on a bridge port. Isoflat uses ebtables to implement firewall
function as ebtables has better support for packet filtering on
bridge ports. The tool is mainly used for link layer filtering
and its network layer filter is fairly simple. Nevertheless, its
network layer filtering support is sufficient for our firewall
implementation.

TABLE I: Composition of an Isoflat firewall rule

Property Type Description

id string Unique ID of the rule
network id string ID of the flat provider network which

the firewall applies to
direction enum Direction of the traffic to be rejected
remote network id string ID of the remote flat provider network

where traffic comes from/goes to
remote ip string IP address space in CIDR where traffic

comes from/goes to
port range min integer Starting port number or ICMP type
port range max integer Ending port number or ICMP code
ethertype string IPv4 or IPv6
protocol string Protocol of the packet to be dropped
description string Description of the firewall rule

Table I lists the attributes for Isoflat firewall rules. The
network_id field refers to the provider network where
the Isoflat firewall rule applies. Isoflat rules also have a
remote_network_id or remote_ip to indicate the
source/destination of the network traffic to be blocked. The
rest of the fields define fine-grained filtering criteria such as
protocol type and port numbers. The firewall rules will be
translated into ebtables chains and rules and deployed on the
correct BRGS .

V. EVALUATION

We have evaluated our Isoflat implementation on a three-
node OpenStack testbed. The testbed setup and connectivity
of the nodes are shown in Figure 8. Two OpenStack Nova
compute nodes (i.e., hypervisors) and the controller node have
the same hardware configuration. Each node is equipped with
a quad-core 3.60GHz CPU, 16GB DDR4 memory, and two
10Gbps network interfaces. These nodes, along with a router,
are connected to one 1Gbps switch and one 10Gbps switch,
which are used for the management network and provider
network respectively. Isoflat has been installed on all the
nodes.

We measure aggregate network throughputs, collected at
the receiver node’s physical network interface, for TCP and

Router Controller Compute1 Compute2

Switch1

Switch2

Internet

Provider Networks

Management Network

Fig. 8: Isoflat testbed composition and connectivity

UDP, the two most frequently used transport layer protocols
[6], as well as Stream Control Transmission Protocol (SCTP)
[7], which was proposed to replace TCP. For each experiment
on a given transport protocol, we create N pairs of sender
and receiver VM instances and connect them to the following
three different types of provider network in turn: (i) a single
flat provider network, (ii) N VLAN provider networks built
upon a single physical network interface, and (iii) N flat
provider networks multiplexed through the same physical
network interface using Isoflat. Each experiment was repeated
10 times, and the mean and standard deviation values were
calculated from 10 runs as the results. All the experiments
were conducted using Ubuntu 16.04 and iperf3 on the 10Gbps
links with iperf3 default parameters.

We first measure network throughputs without traffic filter-
ing. Figure 9 shows the relative wire throughputs of TCP/UD-
P/SCTP on the physical provider network interface using
different types of provider network when N = 1, 2, 4, 8.
The mean and standard deviation values are represented in
percentage of the flat provider network’s throughput with
each specific protocol. The results indicate that Isoflat is very
close to plain flat and VLAN provider networks in terms of
TCP throughput performance and that its UDP and SCTP
throughputs have slight drops (up to 10% less than the flat
provider network). Interestingly, SCTP throughputs exhibit
relatively large variations in all three types of provider network
compared to TCP and UDP throughputs. Note that iperf3 is
only recommended for TCP performance measurement and
large variations of SCTP throughputs may be due in part to
iperf3 implementation and/or its default setting. It is clear from
Figure 9 that Isoflat’s relative performance compared to the flat
network does not degrade with increase of the number of VM
pairs (i.e., N).

We then measure the impact of the security group and
Isoflat firewall on throughput. Note that iptables and arptables
filtering on the bridge are disabled during Isoflat firewall
experiments as the Isoflat firewall uses ebtables. We apply the
same filtering criterion–“allow only SSH and iperf traffic”–
for each transport protocol. Based on the criterion, we create
the security group rules or Isoflat firewall rules. The results
are shown in Figure 10. For TCP traffic, the Isoflat firewall
achieves the same throughput performance as the flat provider
network. There is a minor throughput degradation for Isoflat
firewall when it deals with UDP and SCTP traffic, but way
better than security group. Significant drops in UDP and SCTP
throughputs manifest when the security group is employed

1 2 4 8
60

70

80

90

100

110

N

R
el

at
iv

e
th

ro
ug

hp
ut

(%
)

TCP

1 2 4 8
60

70

80

90

100

110

N

UDP

1 2 4 8
60

70

80

90

100

110

N

SCTP

Flat VLAN Isoflat

Fig. 9: Throughput performance of flat network, VLAN, and Isoflat

for filtering, with or without Isoflat interface multiplexing.
The drastic performance degradation is primarily caused by
iptables applied to the Linux bridges. Clearly, Isoflat firewall
has throughput advantages over security group when dealing
with inter-tenant packet filtering.

To find out the influence of VM placement on network
performance, we also measure the (relative) TCP throughput
between VMs that are allocated on the same hypervisor. The
evaluation results are shown in Figure 11. Similar to previous
results, Isoflat and its firewall show little overhead compared
to flat or VLAN provider networks while the application of
security group introduces substantial impacts on throughput
performance. This can be explained by the fact that the traffic,
which traverses different provider networks, still has to go
through the OVS integration bridge, OVS provider bridge,
and Isoflat Linux bridge if Isoflat is used, and the traffic
is filtered by the security group rules or Isoflat firewall in
the same way as it will be in a scenario of different-host
VM placement. Since the throughput largely depends on the
performance of virtual interfaces and bridges and the packet
filtering mechanism, similar data paths will result in similar
throughput results or even worse results on the same node due
to high CPU loads.

VI. RELATED WORK

Network isolation is essential for multi-tenant data center
networks. Based on the subject of isolation, network isolation
can be further divided into performance isolation and data
isolation. Many approaches have been proposed for network
performance isolation in the past decade. A typical approach
is rate limiting, which is enforced at hypervisors or switches
to ensure fair share of bandwidth among participating tenants.
Such an approach is adopted by Seawall [8], Gatekeeper [9],
Netshare [10], and Pulsaar [11]. Another approach relies on
VM placement or network link allocation to achieve bandwidth
guarantee, which is used in [12] and [13]. Some network
performance isolation frameworks (e.g., [14]) also combine
the above two approaches.

In terms of data isolation, Hao et al. [15] proposed a
network model that combines VLAN and programmable
switches for constructing intra-tenant network across different

geographical zones while isolating inter-tenant traffic based
on customer defined policies. This work can be seen as an
early attempt at applying SDN to cloud network isolation.
Mudigonda et al. [16] achieved multi-tenant network isolation
by encapsulating and decapsulating packets and overwriting
source (destination) MAC addresses at the egress (ingress)
port of the hypervisor, which is managed by dedicated agents.
Nunes et al. [17] took a similar approach in which packets’
MAC addresses are overwritten. They also employed an appli-
cation in the SDN controller to keep tracking the tenants of all
the VMs and issue OpenFlow rules to drop packets traveling
between two tenants. There are other approaches such as [18],
[19] that rely on the labels attached to packets or specific data
and enforce filtering by labels on network edges to realize
isolation.

Isoflat focuses on data isolation in flat provider networks
where tenants utilize the same physical infrastructure and pos-
sibly communicate with each other. Firewalls are more flexible
to control data flow in such environments. Security group is
such a type of firewall that is widely used in commercial
clouds. However, Jin et al. [5] pointed out that misconfig-
uration is common among user-defined security groups and
that it poses a great security risk using security group as the
only resort for tenant network protection. Isoflat’s firewall is
very similar to security group in terms of the composition
of firewall rules. However, their internal implementation and
scope of protection are quite different. Moreover, Isoflat fire-
walls are only configurable to cloud administrators. There also
exist discussions of applying SDN technology for distributed
cloud firewalls (e.g., [20] and [21]), which are potentially
applicable to Isoflat firewalls as the underlying drivers are
interchangeable.

VII. CONCLUSION

In this paper, we have presented a new mechanism named
Isoflat that improves utilization and security of OpenStack
flat provider networks. By introducing an additional layer of
switching, Isoflat enables OpenStack clouds to create multiple
flat provider networks on a single physical interface without
significant change to existing networking infrastructure. Fur-
thermore, Isoflat firewalls give users a shortcut to restricting

1 2 4 8
20

40

60

80

100

120

N

R
el

at
iv

e
th

ro
ug

hp
ut

(%
)

TCP

1 2 4 8
20

40

60

80

100

120

N

UDP

1 2 4 8
20

40

60

80

100

120

N

SCTP

No firewall Flat w/ security group Isoflat w/ security group Isoflat firewall

Fig. 10: Throughput performance of Isoflat firewall and security groups

1 2 4

45

60

75

90

105

N

R
el

at
iv

e
th

ro
ug

hp
ut

(%
)

Flat Flat w/ security group VLAN
Isoflat Isoflat w/ security group Isoflat firewall

Fig. 11: TCP throughput performance comparison with the same-host
VM placement

provider network data flows. Our evaluation shows that Isoflat
makes little impact on TCP throughput but has noticeable
performance improvements on the provider network through-
put compared to the security group. We plan to adapt Isoflat
to other OpenStack ML2 mechanism drivers besides Linux
bridge and Open vSwitch and to enhance provider network
protection with data link layer firewalling.

REFERENCES

[1] “April 2017 OpenStack User Survey,” 2017. [Online]. Available:
https://www.openstack.org/assets/survey/April2017SurveyReport.pdf

[2] V. Del Piccolo, A. Amamou, K. Haddadou, and G. Pujolle, “A Survey
of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE
Communications Surveys and Tutorials, vol. 18, no. 4, pp. 2787–2821,
2016.

[3] “Openstack Docs: Linux bridge: Provider networks,” 2017.
[Online]. Available: https://docs.openstack.org/neutron/latest/admin/
deploy-lb-provider.html

[4] “Openstack Docs: Open vSwitch: Provider networks,” 2017.
[Online]. Available: https://docs.openstack.org/neutron/latest/admin/
deploy-ovs-provider.html

[5] C. Jin, A. Srivastava, and Z. L. Zhang, “Understanding security group
usage in a public iaas cloud,” in Proc. 35th INFOCOM, San Francisco,
CA, 2016, pp. 1–9.

[6] “Caida data monitors – active and passive data monitors,” 2019.
[Online]. Available: http://www.caida.org/data/monitors/

[7] R. Stewart, “Stream Control Transmission Protocol,” Internet Requests
for Comments, RFC Editor, RFC 4960, September 2007. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4960.txt

[8] A. Shieh, S. Kandula, A. Greenberg, and C. Kim, “Seawall: Perfor-
mance isolation for cloud datacenter networks,” in Proc. 2nd USENIX
HotCloud, 2010, pp. 1–7.

[9] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter
Networks,” in Proc. 3rd USENIX Workshop on I/O Virtualization, 2011,
pp. 784–789.

[10] V. T. Lam, S. Radhakrishnan, A. Vahdat, G. Varghese, and R. Pan,
“NetShare and stochastic netshare: Predictable bandwidth allocation for
data centers,” ACM SIGCOMM CCR, vol. 42, no. 3, pp. 6–11, 2012.

[11] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska, “End-
to-end Performance Isolation Through Virtual Datacenters,” in Proc.
11th USENIX OSDI, Broomfield, CO, USA, 2014, pp. 233–248.

[12] C. Guo, G. Lu, H. J. H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “SecondNet: a data center network virtualization architecture
with bandwidth guarantees,” in Proc. 6th Intl. Conf. on emerging
Networking EXperiments and Technologies (CoNEXT), 2010, pp. 15:1–
15:12.

[13] E. Zahavi, A. Shpiner, O. Rottenstreich, A. Kolodny, and I. Keslassy,
“Links as a Service (LaaS): Guaranteed Tenant Isolation in the Shared
Cloud,” in 2016 ACM/IEEE ANCS, 2016, pp. 87–98.

[14] H. Ballani, K. Jang, and T. Karagiannis, “Chatty tenants and the cloud
network sharing problem,” in Proc. 10th USENIX NSDI, 2013, pp. 171–
184.

[15] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song, “Secure Cloud
Computing with a Virtualized Network Infrastructure,” in Proc. 2nd
USENIX HotCloud, 2010, pp. 1–7.

[16] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“NetLord: A Scalable Multi-tenant Network Architecture for Virtualized
Datacenters,” ACM SIGCOMM CCR, vol. 41, no. 4, p. 62, October 2011.

[17] R. V. Nunes, R. L. Pontes, and D. Guedes, “Virtualized network
isolation using software defined networks,” in Proc. 38th Annual IEEE
Conference on Local Computer Networks, 2013, pp. 683–686.

[18] Y. Mundada, A. Ramachandran, and N. Feamster, “Silverline: data and
network isolation for cloud services,” in Proc. 3rd USENIX HotCloud,
2011, pp. 1–6.

[19] K. Onoue, N. Matsuoka, and J. Tanaka, “Host-based multi-tenant
technology for scalable data center networks,” in Proc. 8th ACM/IEEE
ANCS, 2012, pp. 87–98.

[20] A. Mahesh, A. Chandrasekaran, R. ArunKumar, K. SivaKumar, and
N. Vigneshwaran, “Cloud based firewall on OpenFlow SDN network,”
in Proc. 2017 Intl. Conf. on Algorithms, Methodology, Models and
Applications in Emerging Technologies, 2017, pp. 1–6.

[21] Y. Chang and T. Lin, “Cloud-clustered firewall with distributed SDN
devices,” in Proc. 2018 IEEE WCNC, vol. 12, no. 4, 2018, pp. 1–5.

