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Abstract—Network intrusion detection system (NIDS) is indis-
pensable for cloud computing providers to detect ongoing cyber
attacks and deter future ones in the cloud computing era. To help
cloud users to secure their tenant networks inside a computing
cloud, a tenant-based NIDS service model has been proposed
where NIDS services are deployed as virtual instances inside
tenants. However, this approach imposes significant virtualization
overhead at the cost of tenants, and the NIDS provision process
can be time-consuming. In this work, we present an innovative
service model for OpenStack clouds called Network Intrusion
Detection System as a Service (NIDSaaS). NIDSaaS enables
on-demand, quick deployment and termination of NIDS, while
maintaining lightweight overhead for cloud hosts and tenants.
In addition, NIDSaaS provides a straightforward command line
interface (CLI) so that cloud administrators can easily integrate
NIDS with their tenants. We have implemented a prototype of
NIDSaaS and evaluated it on a multi-node OpenStack testbed.
Our evaluation results show that NIDSaaS outperforms existing
VM-based NIDS service approach substantially in terms of
service launch time and resource usage.

Index Terms—Cloud Security, Neutron Plugin, Network Intru-
sion Detection System (NIDS), OpenStack

I. INTRODUCTION

Self-hosted cloud solutions such as OpenStack, Eucalyptus,
and OpenNebula have been extensively developed as cloud
computing becomes increasingly popular. They provide mul-
tiple services to meet cloud computing’s needs in computing,
storage, and networking. However, those solutions often lack
network intrusion detection function that can protect tenants
and detect cyber attacks such as distributed denial-of-service
(DDoS) attacks. Moreover, according to 2019 Verizon data
breach investigations report [1], 34% of attacks involved
insiders. Inside attackers can exploit cloud networking vulner-
abilities against other tenants by port scanning, traffic sniffing,
and traffic spoofing, and so on [2]. To protect cloud tenants
from both external and internal attacks, cloud administrators
can apply network intrusion detection systems (NIDSes) such
as Snort and Suricata to detect malicious traffic and update
firewall rules accordingly to block attack attempts.

Existing approaches to tenant network traffic monitoring
and intrusion detection in a cloud leverage software-defined
network (SDN) [3] and virtual machine (VM) technologies.
Traditionally, the Switched Port Analyzer (SPAN, or port
mirroring) [4] of a physical switch is used to duplicate network
packets and forward these duplicated packets to a preset
NIDS. In a virtualized environment, SPAN is supported by

Open vSwitch (OVS) [5] for traffic mirroring, hence enabling
the development of virtualized NIDS services in a cloud.
However, VMs in the same tenant may be hosted by multiple
hypervisors. This traffic mirroring method constrains the scope
of VM monitoring to a single hypervisor. Traffic mirroring
across multiple hypervisors can be achieved by an OpenStack
plugin called Tap-as-a-Service (TaaS) [6], which provides port
mirroring capability for tenant networks. Using TaaS, users can
set up an NIDS service by launching an NIDS-enabled VM
instance in the cloud and mirroring target network traffic to
the instance for intrusion detection. However, this approach
are costly due to the significant overhead incurred by VM
invocation.

In this paper, we propose a novel NIDS service model for
the OpenStack called NIDSaaS (NIDS as a service), which
provisions on-demand NIDS services and provides suspicious
traffic detection and analysis in tenant space. NIDSaaS is
designed to dynamically create/destroy NIDS services in an
OpenStack cloud and to update NIDS rule sets upon request in
an efficient manner. Unlike VM-based NIDS deployment, we
reduce the time of provisioning NIDS services and eliminate
virtualization overhead by running NIDSaaS on designated
host(s) directly. Since instances of a tenant may reside in
multiple hosts, the traffic mirroring issue in using SDN and
OpenFlow is also addressed in this work. We have devel-
oped an NIDSaaS prototype that consists of a user client,
a service plugin, a service plugin agent, and a Snort-driven
NIDS provider. We have evaluated NIDSaaS performance in
terms of launch time, CPU and memory usage on a multi-
node OpenStack platform. Our evaluation results show that
NIDSaaS can achieve much shorter service launch time and
substantially less CPU and memory consumption compared to
the VM-based NIDS services through TaaS.

The rest of the paper is organized as follows. Section II
briefly reviews the related work. Section III describes the
NIDsaaS architecture, workflow and its network model in
OVS-based OpenStack. Section IV evaluates the launch time
and resource usage of NIDSaaS. Finally, Section V concludes
this paper and discusses future work.

II. RELATED WORK

There are two major intrusion detection techniques for
NIDS: signature-based detection and anomaly-based detec-
tion [7]. Signature-based intrusion detection inspects network
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traffic and decides whether the extracted patterns of inbound
network traffic match one or more predefined signatures (also
called rules). Several popular NIDSes such as Snort [8] and
Suricata [9] use this technology, which can attain a high
level of accuracy for known attacks. However, signature-
based NIDSes are not capable of detecting new, unknown
intrusions. On the contrary, anomaly-based detection can de-
tect previously unseen intrusion events by discovering devi-
ation of anomalous network behavior from the normal one.
Anomaly detection techniques can be classified into three main
categories: statistical-based, knowledge-based, and machine
learning-based [10]. Zeek [11] (previously named Bro) is
capable of anomaly detection by implementing application-
level semantics, event analysis, pattern matching, and protocol
analysis.

One area of NIDS research focuses on making existing NID-
Ses more efficient and effective in computing clouds. In [12],
the authors proposed a hierarchical and autonomous cloud-
based intrusion detection system HA-CIDS, in which system
events are first analyzed to compute the risk parameter and
then the autonomous controller chooses appropriate response
to threats. Meng et al. [13] designed a parallel model to
conduct the exclusive signature matching in the cloud, which
addresses the performance issue of signature-based IDS. Lin et
al. [14] proposed an NIDS that can resolve the virtual system
information from operating systems’ kernel map in hypervisor
layer. By doing so, services in a cloud can be identified
and required detection rules can be tuned dynamically. In
vNIDS [15], the authors addressed the challenges in effective
intrusion detection and non-monolithic NIDS provisioning by
applying detection state sharing and microservice techniques.
The authors of Kitsune [16] utilized the neural network to
track the patterns of network channels efficiently.

New NIDS models have been developed to cope with evolv-
ing network threats and provide new methods for intrusion
detection. Carli et al. [17] studied how to handle large volumes
of traffic and proposed a domain-specific concurrency model
that can partition the network traffic and detect vulnerabilities.
Kim et al. [18] proposed a hybrid intrusion detection method
that integrates a misuse detection model and an anomaly
detection model. They used a decision tree algorithm to
justify the misuse behaviors and a single classification SVM
algorithm for detecting network anomalies. K.Viegas et al.
[19] proposed a new multi-objective feature selection method
for network intrusion detection based on decision tree and
naive Bayes classifiers, which improves detection accuracy
by considering real-world network proprieties. A number of
studies, e.g., [20]-[22], explored deep learning approaches
to network intrusion detection. However, they often lack
evaluation on real-time detection.

III. SYSTEM DESIGN

In this section, we present the architecture, workflow, and
network model of NIDSaaS.
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Fig. 1. Architecture of NIDSaaS

A. Architecture and Workflow

NIDSaaS is designed to provide fast and on-demand NIDS
service provisioning to tenants. NIDSaaS operates across
OpenStack controller, network, and compute nodes. It has
three main components: NIDSaaS client extension, NIDSaaS
plugin, and NIDSaaS plugin agent, as shown in Fig. 1. The
NIDSaaS client extension extends the Neutron client and
provides a suite of commands to help users manage their
NIDS resources remotely. The NIDSaaS plugin loaded by
the Neutron server deals with the user requests sent by the
NIDSaaS client. It also communicates with NIDSaaS plugin
agents via remote procedure call (RPC) to apply changes to
the invoked NIDS services and their rule sets. NIDSaaS plugin
agents are deployed on OpenStack network and compute
nodes. They operate with Open vSwitch and OpenFlow to
realize tenant traffic mirroring. They are also responsible for
managing life cycle of NIDS services.

Fig. 2 shows how a user interacts with NIDSaaS and how
NIDSaaS components interact with each other. There are three
types of commands (denoted by (D) @ (3)) NIDSaaS exposes
to a tenant administrator. Commands of type (1) are used to
create or destroy an NIDS service. Commands of type (2)
are for updating detection rules of a given NIDS service.
Finally, by calling a command of type 3), users can mirror the
network traffic from/to a specific Neutron port to the NIDS
service, which eventually connects the NIDS service to the
target tenant network. The traffic flow direction, source port,
and destination port of the mirrored traffic define a NIDSaaS
flow.

User requests triggered by these commands are sent to
the Neutron server via HTTP REST (REpresentational State
Transfer) APIs. The NIDSaaS plugin creates NIDSaaS APIs
endpoints in the Neutron server, listens for client requests,
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Fig. 2. Workflow of NIDSaaS

and invokes corresponding service plugin functions. For those
requests from outside the cloud, they should be operated
over TLS for security reason. In addition, the API services
should be deployed behind a TLS termination proxy that can
handle incoming TLS connections and decrypting the TLS
and forwarding requests to the API services inside the cloud.
Similar to other OpenStack service plugins, the NIDSaaS
service plugin is responsible for storing necessary information
into the database on the controller node such as network,
subnet, tenant, NIDS port, and type of rule set, etc. Only
cloud administrators can access or grant users to access the
databases.

Upon receiving a command of type (1), the NIDSaaS plugin
will send an RPC message to the NIDSaaS plugin agent on the
network node. Besides creating a new NIDS service, this RPC
message further triggers two essential tasks. First, the plugin
agent creates a Neutron port (TAP port) for the NIDS service
to listen on and also sets up OpenFlow rules for the OVS
bridge so that it can deliver mirrored packets to the Neutron
port. Second, the agent launches the NIDS service with the
preset configuration and connects the service to the Neutron
port. The plugin agent is also responsible for the life cycle
management of NIDS services, including enabling, disabling,
and deleting an NIDS service, using a similar procedure.

If a command of type (2) arrives at the plugin, the NIDSaaS
plugin will notify the plugin agent on the network node of
NIDS rule set changes. The agent will update the rule sets
stored locally and restart the NIDS processes to apply those
changes. When malicious traffic triggers the NIDS rules, an
alert file will be generated and stored in the tenant directory
on the network node. The size of the alert file depends on the
number of rules being triggered.
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Fig. 3. Network Model

Finally, if the NIDSaaS plugin receives a command of type
(3, the RPC messages that contain the NIDS service ID and
NIDSaaS flow information will be sent to the NIDSaaS plugin
agents on compute nodes. After receiving the messages, the
NIDSaaS OVS agent extension will invoke the OVS driver
to set up the bridge and OpenFlow rules, which can mirror
the network traffic of the tenant network and then direct the
mirrored traffic to the NIDS Neutron port on the network node.

B. Network Model

Fig. 3 illustrates NIDSaaS’s network model. We utilize the
TaaS as the port mirroring tool. An OVS Tap Bridge br-tap is
created in each node and connected with the OVS Integration
Bridge br-int and the OVS Tunnel Bridge br-tun, which can
be used for separating from the original network traffic and
steering the duplicated network traffic.

When an NIDS service is going to be deployed by NIDSaaS,
an NIDS port is created on the br-int inside the network node,
while the TaaS updates OpenFlow rules for br-int, br-tap, and
br-tun respectively. During the initialization of NIDSaaS flows,
NIDSaaS plugin agents will configure the OpenFlow rules for
br-int and br-tun on compute nodes via TaaS APL

After the configuration of NIDS service and flow is finished,
the traffic in and/or out of the VM instances will be duplicated
and tagged with TaaS VLAN tag in the br-int. Afterwards,
these tagged packets are transferred from the br-int to the br-
tap, and then forwarded to the br-tun. The br-tun will wrap
the packets with VXLAN tag and then forward them to the
network node via tunnel interface. When the br-tun inside the
network node receives the mirrored traffic from the VXLAN
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tunnel, it will unwrap those packets and add the TaaS VLAN
tag. After that, the packets will be sent to the br-fap and then
to the br-int. The br-int will replace the TaaS VLAN tag with
NIDS port tag and deliver the packets to the NIDS port.

IV. EVALUATION

In this section, we evaluate the performance of NIDSaaS
in terms of the service launch time, and CPU/memory usage
under a specific network traffic load in an OpenStack cloud.

A. Experiment Environment

We used four bare-metal nodes in the Chameleon cloud [23]
for evaluation. Each of the nodes is equipped with two 2.60
GHz Intel Xeon (24 cores) and 192 GiB RAM. One node
works as an OpenStack controller that supplies API, schedul-
ing, and other shared services to the cloud. One node serves
as the network node, providing networking service to virtual
instances and devices. The remaining two nodes are compute
nodes that are installed with OpenStack Nova and Neutron
OVS agents. All those bare-metal nodes in the Chameleon
cloud are connected to a 10 Gbps VLAN. The topology of the
test environment is shown in Fig. 4. The OpenStack services
are deployed using the DevStack, which is a series of scripts
for quickly launching an OpenStack platform. We chose Snort
2.9.11, configured with 3881 community rules, as the NIDS
service for all the test scenarios.

To simulate network attacks and test the functionality of
the NIDSaaS, we use a network trace from the Mid-Atlantic
Collegiate Cyber Defense Competition (MACCDC) [24]. Dur-
ing each test, we launch a traffic sender VM and a traffic
receiver VM. The network traffic is sent from the sender VM
to the receiver VM using tcpreplay'. For our experiments, we
modified the trace, e.g., removing IPv6 packets and all VLAN
tags and modifying destination MAC addresses. The trace after
modification contains 0.99 GiB of data, 3,581,081 packets and
it lasts 53 minutes. We also launch a separate VM for NIDS in
the TaaS test cases. Each VM launched in our experiments has
a 4-core virtual CPU and 4 GiB RAM. The CPU and memory

Uhttps://github.com/appneta/tcpreplay
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Fig. 5. NIDS Service Launch Time

usage is collected by pidstat* continuously during the tests. In
the container tests, we run a Docker container with an NIDS
image and record the container resource usage by the docker
stats command.

We compare the launch time, CPU and memory usage in
the following scenarios.

o Baseline: Launch the NIDS service in an OpenStack
compute node and sniff network traffic from the target
network directly.

e Container (Docker): Launch a container-based NIDS
service in an OpenStack compute node and monitor target
network interface directly, which means the service can
only monitor the VMs deployed inside the compute node.

o TaaS: Launch an NIDS-enabled VM in the OpenStack.
The target tenant network traffic is mirrored to this VM
using TaaS so that NIDS can sniff the network traffic
from different hypervisors.

o NIDSaaS: Deploy and launch the NIDS service on the
OpenStack network node directly. The NIDS service will
sniff on a designated Neutron port to which the target
network traffic is mirrored.

B. Launch Time

To handle the ever-changing volume of network traffic, the
NIDS for the cloud should scale quickly. In this experiment,
we compare the launch time of NIDS services provisioned
by NIDSaaS with the launch time in baseline, container and
TaaS scenarios. The launch time is defined as the minimum
time required from starting an NIDS service to the point where
the service is ready for intrusion detection. In the baseline, the
launch time is the duration for an NIDS process to be started
and ready. In the container scenario, the launch time refers to
the time interval from docker run command being executed
to the point where the NIDS process inside the container is
launched. In the TaaS scenario, the launch time refers to the
time needed for booting the NIDS VM and launch the NIDS
process. In the NIDSaaS scenario, the launch time is measured
from when a user request is sent to the point when the NIDS
service is fully started.

Each test is repeated ten times, and the results of their
averages are shown in Fig. 5. The average launch time for

Zhttps://linux.die.net/man/1/pidstat
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Fig. 6. CPU and Memory Usage

the baseline scenario is minimal, only 45 ms, due to no cost
in virtualization or communication. The average launch time
for the container scenario is 502 ms, ten times larger than
the baseline. Since the request of creating an NIDS service
needs to be transferred and processed across multiple nodes
in the NIDSaaS scenario, the launch time is relatively long,
1.760 seconds on average. However, compared to the TaaS
scenario, in which the average is 10.588 seconds, NIDSaaS
takes much shorter time (only 16%) to launch, which makes
NIDSaaS more “elastic”. Launching an NIDS VM is needed in
the TaaS scenario, and booting a VM takes much longer time
than processing and network communication in the NIDSaaS
scenario or starting a container in the container scenario.

C. CPU and Memory Usage

We break down each scenario into multiple cases based on
whether the sender and receiver VMs are in the same hypervi-
sor. By doing so, we can evaluate whether the placement of the

TABLE I
TEST CASES FOR DIFFERENT VM AND NIDS PLACEMENTS

# Name Sender Receiver NIDS

1 Baseline ~ Compute 1  Compute 1 ~ Compute 1
2 Container Compute |  Compute 1  Compute 1
3 TaaS Compute 1  Compute 1 ~ Compute 2
4 TaaS Compute 1  Compute 1 ~ Compute 1
5 NIDSaaS  Compute 1  Compute 1 Network

6 Baseline ~ Compute 1  Compute 2  Compute 1
7  Container Compute I  Compute 2  Compute 1
8 TaaS Compute 1 ~ Compute 2 Compute 2
9 TaaS Compute 1  Compute 2 Compute 1
10 NIDSaaS  Compute 1  Compute 2 Network

receiver has an impact on NIDS performance. Moreover, the
placement of the NIDS VM in the TaaS scenario also needs
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to be considered. All the placement cases are listed in Table I.

For each test case, we replay MACCDC trace from the
sender to the receiver. Given that the actual sending rate
can vary for high sending rates, the sending rate is fixed at
50 Mbps in all tests. In each test, the NIDS service issued
the same number of alerts (18,388). Packet loss existed but
was negligible in those tests. For the baseline, container and
NIDSaaS scenarios, we record the CPU and memory usage
of the NIDS process once every second during each test. For
the TaaS scenario, the CPU and memory consumption of the
processes for the NIDS VM in the hypervisor is recorded every
second in each test.

The average CPU and memory consumption in all test
cases is shown in Fig. 6. Clearly, the baseline cases (1 and
6) consume the least amount of CPU and memory. Since
the docker container is lightweight, the container cases are
about the same as the baseline and NIDSaaS cases in terms
of memory usage and consume around 4% more CPU than
the baseline and NIDSaaS cases. In the TaaS test cases, it
is evident that CPU usage sometimes exceeds 100%. This is
attributed to that more than one CPU core are being used
by the NIDS VM. Compared to TaaS, NIDSaaS consumes
way less resources, approximately only 7-50% of the CPU
time and 9-30% of the memory consumed by TaaS, no matter
whether the sender and receiver VMs are on the same host or
not. Overall, NIDSaaS shows similar CPU and memory usage
patterns as baseline and introduces far less CPU and memory
overheads than TaaS.

V. CONCLUSION

In this paper, we presented a new NIDS service model
named NIDSaaS for OpenStack clouds, which provides ef-
ficient intrusion detection services to cloud tenants. NIDSaaS
leverages the existing OpenStack network infrastructure model
and OpenFlow to capture network traffic of one or multiple
monitoring targets in an easy and flexible manner. NIDSaaS
can instantiate, modify, and terminate NIDS services conve-
niently. We implemented an NIDSaaS prototype and evalu-
ated its performance using a multi-node OpenStack testbed.
Compared with the VM-based NIDS service approach, our
approach has way less resource overhead and significantly
shorter service provision time. In future work, we will investi-
gate the scalability of NIDSaaS and expand its NIDS support
beyond Snort. We will also consider optimizing NIDS service
placement and automatic service scaling.
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