Network Intrusion Detection System as a Service
on OpenStack Cloud

Chen Xu, Ruipeng Zhang, Mengjun Xie, Li Yang
The University of Tennessee at Chattanooga
{kjx384,smj793} @mocs.utc.edu,{ Mengjun-Xie,Li-Yang} @utc.edu

Abstract—Cloud computing has become a major computing
paradigm and data processing approach in almost all sectors. To
ensure normal business operation and data security, performing
traffic monitoring and detecting suspicious network packets and
possible network intrusions have become a daily job for tenant
administrators. Using existing tools, a tenant administrator can
set up a Network Intrusion Detection System (NIDS) on a virtual
machine (VM) instance in the tenant and mirror the traffic
from other instances in the tenant to the NIDS instance via
Tap as a Service (TaaS) or a Switched Port Analyzer (SPAN)
port. However, this type of mechanisms can consume significant
resources (e.g., CPU and bandwidth) in the cloud environment.
In this work, we propose a new lightweight approach, namely
Network Intrusion Detection System as a Service (NIDSaaS), for
OpenStack cloud. Our preliminary experimental results show
that our NIDSaaS approach consumes much less CPU compared
to the existing TaaS approach.

Index Terms—Cloud Security, Neutron Plugin, NIDS, Open-
Stack

I. INTRODUCTION

As cloud computing becomes increasingly popular, open
source cloud platforms such as OpenStack, Eucalyptus, and
OpenNebula are receiving more attention and support and
growing rapidly. OpenStack, in particular, has become one
of major cloud computing platforms and been used to build
both public and private computing clouds in many sectors.
With more data being moved into the cloud, network security
and data privacy in their tenant networks have become vital
to the organizations that rely on cloud computing for their
businesses. Network intrusion detection systems (NIDS) are
often used to guard against cyber attacks. However, existing
solutions for implementing network intrusion detection in a
cloud environment can incur significant resource consumption
and may even affect normal businesses. To cope with daily
traffic detection in tenant networks and offer an optimized
network security solution, we propose a new approach, Net-
work Intrusion Detection System as a Service (NIDSaaS), for
cloud computing. We start with our NIDSaaS design for Open-
Stack. It provides network intrusion detection capability for
tenant virtual networks. By using NIDSaa$S, tenant and cloud
administrators do not need to set up special NIDS instances.
They can use easy-to-use NIDSaaS commands to launch NIDS
services to monitor traffic from/to one or multiple instances in
real time with low resource consumption. Our preliminary ex-
perimental results show that our NIDSaaS approach consumes
much less CPU compared with the existing TaaS approach.

II. RELATED WORK

A few studies have been conducted on NIDS deployment
in a computing cloud. Santoso et al. [1] configured the switch
SPAN port that can collect the cloud traffic to forward the
traffic to a Snort system. Mahajan et al. [2] tried to deploy
a Snort instance in different locations to examine external
and internal traffic by configuring the Open vSwitch (OVS)
SPAN port. Improving NIDS effectiveness is another important
topic in cloud security. In vNIDS [3], the authors focused
on the challenges regarding effective intrusion detection and
non-monolithic NIDS provisioning by using detection state
sharing and microservice techniques. The authors of Kitsune
[4] utilized neural network to efficiently track patterns of a
network channel. However, these proposed methods do not
address the issues of tenant instances distributed on different
compute nodes or complex configuration of NIDS service.

ITI. SYSTEM DESIGN AND IMPLEMENT

In our design, NIDSaaS has three major components: client
extension, plugin, and plugin agent. The NIDSaaS client exten-
sion extends the Neutron client command line, which is used to
send command messages to the Neutron server. The NIDSaaS
plugin residing in the Neutron server handles the commands
from clients and plays a role of RPC (Remote Procedure
Call) client by sending RPC messages to the network and
compute nodes that have deployed NIDSaaS plugin agent. The
NIDSaaS plugin agent registers as an RPC server and handles
the RPC messages from its plugin.

Figure 1 illustrates how NIDSaaS works. There are three
types of commands available for tenant administrators. Com-
mands of type (1) are used to create/destroy an NIDS service.
Commands of type (2) are for updating detection rules of a
given NIDS service. Finally, by calling a command of type (3),
users can mirror the network traffic from/to a specific Neutron
port to the NIDS service, which eventually connects the NIDS
service to the target tenant network.

User requests triggered by client commands are sent to the
NIDSaaS plugin via HTTP. The NIDSaaS plugin listens on
the NIDSaaS REST API endpoints for NIDSaaS commands.
Moreover, the NIDSaaS plugin is responsible for storing
necessary information of the network, NIDS port and rule set,
etc. If the plugin receives command request (1), it will send
an RPC message containing the request of command (1) to the
plugin agent on the network node. After the NIDSaaS plugin
agent receives the message, it will perform two important

Authorized licensed use limited to: UTC Library. Downloaded on July 06,2020 at 00:13:51 UTC from IEEE Xplore. Restrictions apply.

<. @@@ NIDSaas Client @ NIDS service creation/deletion
LU_H Extension @ NIDS detection rule set update
(3) NIDS flow creation/deletion
Administrator HTTP
Controller Node
NIDSaaS
Plugin
RPC
Network Node Compute Node
(00 NIDSaaS ® NIDSaa$
plugin agent plugin agent
0OVS Agent NIDS Agent NIDSaaS 0\/.5 Agent
Extension Extension
OVS-Driver Snort OVS-Driver

Fig. 1. Workflow of NIDSaaS

tasks. First, the plugin agent creates a Neutron port for the
NIDS service to listen on and also sets up OpenFlow rules for
the OVS bridge so that it can deliver mirrored packets to the
Neutron port. Second, the agent launches the NIDS service
with the default configuration and connects the service to the
Neutron port. If a command of type (2) arrives at the plugin, the
NIDSaaS plugin will notify the plugin agent on the network
node. The agent will update the rule sets stored locally and
restart the corresponding NIDS process to apply those changes.
If the plugin receives the command request of type (3), the RPC
message will be directed to the NIDSaaS plugin agent on the
applied compute node(s) and then forwarded to the NIDSaaS
OVS agent extension. The NIDSaaS OVS agent extension on
the compute node will invoke the OVS driver to set up the
bridges and OpenFlow rules to mirror packets and send them
to the NIDS port on the network node.

IV. EVALUATION

In our preliminary evaluation, we employed four bare-metal
nodes in the Chameleon cloud [5] each with two 2.60 GHz
Intel Xeon CPUs (24 cores) and 192 GB RAM to build the
OpenStack test environment, which includes one controller
node, one network node and two compute nodes. All these
bare-metal nodes are connected to a 10 Gbps VLAN. We chose
Snort 2.9.11 configured with community rules (3881 rules) as
the NIDS service in our experiments.

To simulate network attacks, we applied the network traffic
trace collected from Mid-Atlantic Collegiate Cyber Defense
Competition (MACCDC) to generate attack traffic, which is
sent from a sender VM to a receiver VM using tcpreplay.
The trace was modified for replay. Each VM used in the
experiments has 4 vCPUs and 4 GB RAM. We used pidstat to
collect resource usage. We collected the CPU usage of Snort
in the following three scenarios.

o Baseline: Install and launch the NIDS service in one
OpenStack compute node and sniff network traffic from
the target network directly.

o TaaS: Boot an NIDS-enabled VM in the OpenStack. The
target network traffic is mirrored to this VM using TaaS
so that the NIDS in the VM can sniff the network traffic
indirectly.

-Baseline TaaS NIDSaa$

CPU Usage (%)

|l NM 1 o & "
[R | h [] u‘\,nr'. ","*A‘
Y Ny

|

1 ! | —

0 10 20 30 40 50 60 70 8 90 100 110 120 130 140 150 160 170

Time Elapsed (Sec)
Fig. 2. CPU usage

o NIDSaaS: Deploy and launch the NIDS service on the
OpenStack network node directly. The NIDS service
will sniff on a dedicated Neutron port to which the
target network traffic is mirrored. Compared with the
baseline, NIDSaaS can monitor tenant network traffic
from different compute nodes.

We replayed the MACCDC trace at the rate of 50 Mbps
ten times in each scenario. The average CPU usage of Snort
in the three scenarios is shown in Figure 2. From the figure,
Snort in the Baseline consumes the least CPU among all the
three scenarios, which is expected. Snort in the TaaS scenario
consumes much more CPU due to the virtualization overhead.
The CPU usage of the Snort VM sometimes exceeds 100%,
which means two or more CPU cores are being occupied by
the VM. Compared to TaaS, NIDSaaS consumes far less CPU
no matter whether the sender and receiver VMs are on the
same physical node or not. In fact, the experiments in the
NIDSaaS scenario show quite similar CPU usage patterns as
those in the Baseline scenario.

V. CONCLUSION

We have presented our preliminary study on implementing
NIDS as a Service on OpenStack. Compared with an existing
approach through TaaS, our method consumes less CPU. Our
future work includes more comprehensive measurement and
optimization of NIDSaaS performance and scalability.

REFERENCES

[1] B. L. Santoso, M. R. S. Idrus and I. P. Gunawan, “Designing Network
Intrusion and Detection System using signature-based method for pro-
tecting OpenStack private cloud.” In Proc. InAES, pages 61-66, 2016.

[2] Varun Mahajan, Sateesh K Peddoju, “Deployment of Intrusion Detection
System in Cloud: A Performance-based Study.“ In Proc. IEEE Trust-
com/BigDataSE/ICESS, pages 1103-1108, 2017.

[3] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon Ahn, and Fugiang
Zhang. “vNIDS: Towards Elastic Security with Safe and Efficient
Virtualization of Network Intrusion Detection Systems.“ In Proc. CCS,
pages 17-34, 2018.

[4] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai.
“Kitsune:An Ensemble of Autoencoders for Online Network Intrusion
Detection.” In Proc. NDSS, 2018.

[5] K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti, P.
Rad, P. Ruth (2019) Chameleon: a Scalable Production Testbed for
Computer Science Research. In: Jeffrey Vetter (eds) Contemporary High
Performance Computing: From Petascale toward Exascale, Vol 3. CRC
Press.

Authorized licensed use limited to: UTC Library. Downloaded on July 06,2020 at 00:13:51 UTC from IEEE Xplore. Restrictions apply.

