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Abstract. With the rate of computing power growing much faster than
that of storage I/O access, parallel applications suffer more from I/O
latency. I/O prefetching is effective in hiding I/O latency. However, ex-
isting I/O prefetching techniques are conservative and their effective-
ness is limited. Recently, a more aggressive prefetching approach named
pre-execution prefetching [19] has been proposed. In this paper, we first
identify the drawback of this pre-execution prefetching approach, and
then propose a new method to overcome the drawback by scheduling
the I/O operations between the main thread and the prefetching thread.
By careful I/O scheduling, our approach further extends the computa-
tion and I/O concurrency and avoids the I/O competition within one
process. The results of extensive experiments, including experiments on
real-life applications such as big matrix manipulation and Hill encryp-
tion, demonstrate the benefits of the proposed approach.

1 Introduction

Parallel applications execution suffers from large latency of I/O accesses. The
poor I/O performance has been attributed as a critical cause of the low sustained
performance of parallel systems ([1], [2]). In order to improve I/O performance
numerous works have been conducted. However, their effectiveness and practi-
cability are limited by their inherent drawbacks.

A remarkable advancement in I/O parallelism ([5], [6], [7], [18]) has been
achieved. However, this advancement in I/O parallelism is accompanied with
a much more expeditious development of parallel processing both on hardware
and software, so it is still not capable of reducing the I/O latency effectively.
The Adaptable IO System (ADIOS) ([22], [23]) and non-blocking I/O [21] can
gain a high I/O performance improvement but they require application modifi-
cation ([21], [24]). The effectiveness of collective I/O and data sieving ([8], [9])
is application dependent. Due to the inherent nature of applications, there are
still many small I/O requests that cannot be eliminated [19]. Studies [3] and
[4] use data compression scheme to reduce the amount of I/O traffic. However,
limited by the data condensability, compression rate and extra overhead on the
system management, the exploitation of data compression approach in practice
is restricted. Traditional prefetching strategies ([10], [11], [12], [13], [14], [15],
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[16], [17]) are conservative and most cannot guarantee the prefetching accuracy
and timeliness.

Considering computing power is plenty but data access is the bottleneck and
most of existing I/O prefetching techniques are conservative and their effec-
tiveness is limited, Chen et al. [19] proposed a pre-execution I/O prefetching
approach. Pre-execution I/O prefetching approach is promising in reducing I/O
access latency and it can convert original applications to prefetching version au-
tomatically. Following this direction, in order to overcome the limitation due to
read after write (RAW) dependency and further extend the computation and I/O
concurrency, Zhao et al. [20] proposed a parallel pre-execution prefetching (PPP)
approach. However, both [19] and [20] do not pay attention to the relationship
among the I/O accesses conducted by diverse threads. And they failed to fur-
ther extend the I/O and computation concurrency by carefully coordinating the
I/O accesses. Our work aims to resolve this issue by developing a new approach
named pre-execution prefetching with inter-thread I/O scheduling (PPIS). With
PPIS we extend the computation and I/O concurrency while avoiding the I/O
competition caused by multiple concurrent I/O operations requested by the main
thread and prefetching thread in one process.

The rest of the paper is organized as follows. Section 2 describes the motivation
of this work. Section 3 presents PPIS. Section 4 details the experiment designs
and results. Section 5 concludes this paper and states our future work.

2 Motivation

In [19], Chen et al. proposed a pre-execution prefetching approach (PP). The
basic idea is to pre-execute a portion of code on each process to identify future
I/O references, and then fetch the data closer to CPU in advance in order to
overlap the computation and I/O access.

PP approach aims to overlap the computation and I/O access by creating
a pre-execution prefetching thread (PT) to work with the main thread (MT)
in parallel. However, a portion of I/O accesses requested by PT may be over-
lapped with MT’s I/O accesses when MT has I/O operations such as writes and
those reads that cannot be conducted by PT early enough. In other words, this
portion of pre-executed I/O accesses fails to be hidden by computation. This
issue will result in a series of adverse effects. First, it diminishes the degree of
the parallelism between computation and I/O, which affects the effectiveness
of pre-execution prefetching. Second, the I/O resource competition between the
simultaneous I/O accesses of MT and PT can delay MT’s I/O access, which
goes against the purpose of pre-execution prefetching to accelerate the execu-
tion of the original program. Third and most importantly, PP does not take
into account the global I/O network and file system source competition. Simply
launching more concurrent I/O requests within local process will result in high
I/O competition even I/O congestion in the whole system, and end up over-
whelming the network and the file system, which not just limits the scalability
of the pre-execution prefetching, but makes the prefetcher counter-productive as
well.
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Figure 1 illustrates an application scenario and shows how it runs under nor-
mal execution mode and PP mode, where the size of each operated segment
represents time duration. This application scenario is typical in real applications
such as big matrix manipulation and big file encryption where the process in
normal execution mode sequentially processes a large volume of data. For each
piece of data, data reading, computation, and writing are executed in sequence.
Under PP execution mode, the process contains two threads, MT and PT. Since
I/O access is the focus of PT and in this scenario dominates PT’s execution time,
we can safely ignore the time incurred by computation conducted by PT in Fig.
1. As under PP mode, PT is designed to do data prefetching as fast as possible,
I/O overlap between PT and MT is easy to occur. The scenario in Fig. 1 shows
that under PP mode, a high portion of I/O accesses of PT overlaps with that
of MT. They are R2 overlapping with R1 and R4 overlapping with W1. Only
the I/O operation R3 is successfully overlapped with the computation of MT.
In this scenario, the computation and I/O access concurrency achieved by PP
is much limited. Worse, the I/O overlap between MT and PT results in the I/O
resource competition, which makes the I/O access latency (R1 , R2 , W1 and R4)
longer, and then delays the normal execution of MT. When the impact induced
by prefetching operations conducted by other processes is taken into account the
outcome will be even worse. In case hundreds of processes are employed for a
large computing job, which is common for high-performance computing applica-
tions, doubled number of concurrent I/O accesses induced by PP can even cause
I/O congestion.

Fig. 1. Hiding I/O Latency with PP and PPIS
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Fig. 2. I/O Workflow of PP Fig. 3. I/O Workflow of PPIS

3 Pre-execution Prefetching with Inter-thread I/O
Scheduling

3.1 Description

We propose a new approach, pre-execution prefetching with inter-thread I/O
scheduling (PPIS), to further improve the pre-execution prefetching strategy.
The benefit of our approach is twofold. First, we extend the degree of compu-
tation and I/O concurrency of a parallel application, and further hide the I/O
latency. Second, we improve the scalability of the pre-execution prefetching by
avoiding multiple concurrent I/O operations conducted within each process.

In PPIS, we assign a higher priority to MT’s I/O accesses to make sure they
gain the maximal system I/O resources. Concretely, only when MT is not per-
forming I/O operation can PT launch an I/O operation. In case MT needs to per-
form I/O operations while at this moment PT is still doing I/O prefetching, we
suspend PT’s prefetching and record its current prefetching status information,
for example the identifier of the block that has just been completely prefetched.
After MT finishes its I/O access, MT notifies PT to continue prefetching. By
scheduling the I/O accesses of MT and PT in a coordinate manner, PPIS can
maximize the parallelism of I/O access and computation, and meanwhile avoid
the I/O competition within one process. Figure 2 and Fig. 3 show the I/O work-
flow of threads when both MT and PT are conducting I/O operation under PP
and PPIS scenarios respectively.

The advantages of PPIS over PP are illustrated in Fig. 1, which compares how
PPIS and PP progress in the scenario mentioned in Sect. 2. In this ideal case,
PPIS maximizes PT’s I/O access and MT’s computation concurrency. More-
over, it avoids the I/O competition between the two threads, which not only
optimizes the completion time of MT’s I/O access, but also avoids the potential
I/O congestion caused by PP when the number of concurrent processes is large.
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3.2 Implementation

Software Stack. We employ MPI protocol and its parallel API to actualize the
execution of parallel applications. In order to implement PT co-working with MT
within each process, we adopt the POSIX Threads (Pthreads) multi-threaded
programming standard. We conduct the parallel file system access through the
ROMIO MPI-IO implementation in Open MPI. Figure 4 shows the software
stack to implement our approach.

Fig. 4. Software Stack (Module inside the dashed line box
represents the experiment environment used in Sect. 4)

Fig. 5. Threads I/O Related Behavior of PPIS

Threads I/O Related Behavior to Implement I/O Scheduling. We em-
ploy a condition variable and Pthreads inter-thread message passing mechanism
to accomplish the inter-thread I/O scheduling. The condition variable is used
as a flag managed by MT. Initially the flag is set as unlocked. When MT starts
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performing I/O access it first locks the flag. Locked flag indicates that PT can-
not launch any I/O accesses. Otherwise, the prefetching is allowed. When PT
encounters a read function, it has to check the flag’s status first. If the flag is
locked, then PT goes into the suspend status. When MT finishes its I/O access
it unlocks the flag and sends a notification to wake up and allow PT to prefetch
data into cache. Figure 5 shows the I/O related behavior of each thread in PPIS.

3.3 Analysis

Optimal Analysis. PP introduces extra I/O accesses over normal execution.
In the worst scenario, all MT and PT I/O accesses collide and result in I/O
congestion. Then the original application execution can be delayed infinitely.
By introducing I/O scheduling PPIS not only avoids this issue but also further
extends the degree of I/O access and computation concurrency of a parallel
program. In this section we analyze the optimal speedup achieved by PPIS over
normal execution.

Table 1. Notations

NC the number of segments of computation in the original application

NW the number of segments of write operation in the original application

NR the number of segments of read operation in the original application

TNormal the total execution time of the application under normal execution

TPPIS the total execution time of the application under PPIS mode

TTH OP SN MO

The execution time of a certain operation (TH: thread; OP:
operation; SN: serial number; Mode: execution mode (e.g.,
TMT R i Normal refers to the execution time of MT’s ith segment
of read under normal execution mode))

NTH OP MO

The number of segments of a certain operation (e.g., NPT R PPIS

refers to the number of segments of read conducted by PT under
PPIS mode)

The total execution time of the program under a certain mode is actually
MT’s execution time, so

TMode =

NMT R Mode∑

i=1

TMT R i Mode +

NMT W Mode∑

j=1

TMT W j Mode

+

NMT C Mode∑

k=1

TMT C k Mode. (1)

Here, Mode ∈ {Normal, PP, PPIS}. Under normal execution mode MT con-
ducts all the operations exactly identical to how the original application does.
And under PPIS all write and computation operations are conducted by MT with
the same progress time as those under normal execution mode assuming the I/O
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accesses of other processes in the system are not disturbed by the prefetching.
Thus,

TNormal =

NR∑

i=1

TMT R i Normal+

NW∑

j=1

TMT W j Normal+

NC∑

k=1

TMT C k Normal. (2)

TPPIS =

NMT R PPIS∑

i=1

TMT R i PPIS +

NW∑

j=1

TMT W j Normal +

NC∑

k=1

TMT C k Normal.

(3)
In the optimal case, all the data to be read in the application is prefetched by
PT with completely overlapping with the computation of MT, then,

TPPIS =

NW∑

j=1

TMT W j Normal +

NC∑

k=1

TMT C k Normal. (4)

The speedup achieved by PPIS over the normal execution mode is:

Speedup(PPIS/Normal)

= TNormal/TPPIS

=

∑NR

i=1 TMT R i Normal +
∑NW

j=1 TMT W j Normal +
∑NC

k=1 TMT C k Normal
∑NW

j=1 TMT W j Normal +
∑NC

k=1 TMT C k Normal

<=

∑NR

i=1 TMT R i Normal +
∑NC

k=1 TMT C k Normal∑NC

k=1 TMT C k Normal

. (5)

To hide all the read latency by computation, there must be

NR∑

i=1

TMT R i Normal <

NC∑

k=1

TMT C k Normal. (6)

With

lim

NC∑

k=1

TMT C k Normal =

NR∑

i=1

TMT R i Normal. (7)

So,

SpeedupPPIS/Normal <= 2

NC∑

k=1

TMT C k Normal/

NC∑

k=1

TMT C k Normal = 2. (8)

Namely,
max{Speedup(PPIS/Normal)} = 2. (9)

So, in the optimal scenario, PPIS can hide all the read latency suffered by an
application and achieve 50% total execution time reduction of that application
over normal execution.
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Cost. Over the existing pre-execution prefetching approach, in which I/O re-
lated operations conducted by PT do not involve communication with other
processes in general [19], PPIS requires an inter-thread I/O scheduling, which is
quite light-weight in cost. Throughout the implementation of the I/O schedul-
ing, only a condition variable and several inter-thread messages are added to
the existing pre-execution prefetching implementation. Also, the messages are
thread control messages with no additional data transported, which are quite
small in size. Thus, the overhead caused by I/O scheduling is negligible, espe-
cially, when it is compared to the huge workload of parallel applications. The
cost does not impact the effectiveness of PPIS, which is also verified by the
performance improvement achieved by PPIS as shown in Sect. 4.

Correctness. First, the existing pre-execution prefetching approach can guar-
antee the correctness of the original program. Second, the I/O scheduling be-
tween PT and MT only deals with the prefetching time of PT, so it does not
affect the logical behavior and accuracy of MT. Thus, the MT in a program
running with and without PPIS will logically behave identically. In summary,
PPIS does not affect the correctness of the original program.

Thread Safety. First, only one global variable is added on top of PP to im-
plement PPIS. Since only MT has the access to write it, there is no concur-
rent read/write by multiple threads on this global variable. Thus, no additional
thread safety risk is induced to the existing pre-execution prefetching. Second,
by introducing a prefetching file pointer as a hidden file offset pointer within the
non-transparent MPI file handle object in order to track the prefetching thread
file offset, the thread safety can be guaranteed naturally by PP [19]. Therefore,
PPIS is thread-safe.

4 Experiment

Our experiments were conducted on a 66-node 528 processors Linux-based clus-
ter. Each compute node has 16 GB of RAM and 2 CPU sockets, each with
quad-core Intel Xeon 2.66GHz CPU. Depending on the number of processes in
experiment, we used the subset of this cluster with size ranging from 1 to 16
compute nodes. We dynamically assign the buffer size as demand in each node,
which can be large enough for our experiments as each node has 16 GB of RAM.
Software environment refers to the dashed line box in Fig. 4.

4.1 Design

We evaluated the benefits of our approach on big matrix searching operation and
Hill encryption application respectively. The former was tested under the system
with light I/O workload. The later was tested under the system with light and
heavy I/O workload, respectively. For the light I/O workload, only our experi-
ment benchmark accessed the disk in the system. To achieve a heavy workload
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environment, we conducted multiple simultaneous large file I/O operations in
the system. We evaluated the results with three metrics, total execution time,
aggregate sustained bandwidth and I/O latency, which are the most important
performance metrics in practice.

Experiment #1: Big Matrix Searching. Big matrix searching is the fun-
damental operation of many real parallel applications. In this experiment we
conducted searches in a big integer matrix, which is 4GB in size, to find its top
30 maximum items. The matrix was split into 4 sub-matrices with equal size to
process in sequence.

Experiment #2: Hill Encryption. Hill encryption is a real application to
encrypt data with Hill cipher, in which the key is a matrix. When the plaintext
data is large it will be partitioned into smaller chunks, and then these chunks are
encrypted in sequence. In this experiment we encrypted a big file of 6GB with
the key matrix size was set as 100 by 100. First, we tested the case in which the
chunk size is 2GB. Then we further tested the I/O latency reduction achieved
by PPIS over normal execution mode under different chunk sizes.

4.2 Results

Experiment #1. Figure 6 shows the total execution time results. The exe-
cution time under the PPIS mode is reduced in all the cases showed in Fig.6
compared to normal execution and PP, respectively. Over normal execution and
PP the maximal reduction is 28.6% and 28.2% when the number of processes is
16 and 64, respectively. As a reference, Fig. 6 also shows the application’s exe-
cution time under the theoretically optimal scenario, in which the I/O latency
would be completely masked. The computation dominates the whole applica-
tion when the number of processes is small (e.g., 1 and 2). Thus, even if a large
amount of I/O latency was hidden by PPIS the reduction percentage of the whole
application execution time is quite marginal. For large applications which run

Fig. 6. Execution Time Fig. 7. I/O Latency
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tens of days or even months, the reduction of the execution time is significant
as the amount of I/O time being hidden would constitute tens of hours of the
applications. When the number of the processes is large the computing workload
assigned to each process is quite low, which limits the amount of I/O latency
hidden by computation. Thus, high execution time reduction percentage under
PPIS mode can be achieved with moderate number of parallelisms as observed
in [20]. In Fig. 6, when the number of processes exceeds 16 and 32 respectively,
the execution time under the PP mode starts to increase. With the number of
processes is 64, it is even larger than that of the normal execution. PPIS, on
the other hand, can achieve execution time reduction compared to the other two
modes in all the cases.

Figure 7 shows the corresponding results of I/O latency during the whole exe-
cution of the application. In most of cases, a considerable I/O latency reduction
percentage has been achieved by PPIS over the other two modes with the max-
imal reduction being 75.1% over normal execution mode when the number of
processes is 1 and 54.3% over PP mode when the number of processes is 4. Most
importantly, the PPIS outperforms the normal and PP modes for all process sizes
being evaluated while the normal and PP modes outperform/underperform over
one another at certain process sizes being evaluated.

Fig. 8. Execution Time (light I/O) Fig. 9. Execution Time (heavy I/O)

Experiment #2. Figure 8 and Fig. 9 show the execution time of the Hill
encryption with the chunk size is 2GB. Likewise, PPIS achieves execution time
reduction in all cases shown in the figures compared to normal execution and PP,
respectively. Under the light workload system, the best execution time reduction
achieved by PPIS is 47.4% and 54.6% over normal execution and PP with the
number of processes is 32 and 64, respectively. Under the heavy workload system,
the corresponding results turn out to be 27.6% and 24.0% with the number of
processes is 16 and 64, respectively. Besides, better scalability was achieved by
PPIS compared to PP in both circumstances.

Figure 10 and Fig. 11 show the I/O latency during the whole encryption pro-
cess. Quite high I/O latency reduction percentage acquired by PPIS is observed
with the maximal reduction being 67.0% over normal execution and 62.9% over
PP under the number of processes being 1 and 32, respectively.
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Fig. 10. I/O Latency (light I/O) Fig. 11. I/O Latency (heavy I/O)

Figure 12 shows the I/O latency reduction achieved by PPIS over normal exe-
cution mode under light I/O workload as the chunk size changes. In some cases,
the I/O latency reduction is close to 100%. It demonstrates that in these cases
PPIS can almost hide the entire I/O latency of the Hill encryption application
by scheduling the pre-executed I/O operation to strictly overlap with computa-
tion. When the number of process is larger than or equal to 32, the reduction
drops. The reason is that the computation workload assigned to each process is
too small to hide all the I/O latency.

Fig. 12. I/O Latency Reduction

In experiments #1 and #2 when the number of processes is larger such as
128 or 256 the advantage of PPIS in terms of scalability is more remarkable.
For instance, the execution time reduction achieved by PPIS compared to PP
for 256 processes under the heavy I/O workload system in Experiment #2 is
42.1%. It is larger than those under the number of processes being 128 and
64, which are 31% and 24.0%, respectively. The effectiveness of PPIS under
heavy workload system also indicates that PPIS benefits the application, which
is running simultaneously with other multiple applications in the system as well.
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5 Conclusion and Future Work

Parallel applications continue to suffer from I/O latency. In this study, by propos-
ing PPIS approach, we enhanced the existing pre-execution prefetching strategy
to further hide I/O latency. Meanwhile, the new pre-execution prefetching ap-
proach is more scalable. The main contribution of this study is that we employed
the active scheduling or careful coordination on the normal and pre-executed
I/O accesses to maximum the overlap between the pre-executed I/O accesses
and computation, which is the first work to the best of our knowledge in this
research direction. Compared to the existing pre-execution prefetching approach
PPIS extends the degree of computation and I/O concurrency, and also avoids
the I/O congestion caused by multiple I/O operations requested by one pro-
cess synchronously. The extensive evaluation results, including one from Hill
encryption as a real-life application, have verified that the proposed approach
has more potential and better scalability to hide I/O access delay than the ex-
isting approach. In order to further decrease or avoid impact on all processes in
system introduced by prefetching our future work is to schedule the normal and
pre-executed I/O accesses in inter-process level.

Acknowledgement. This work is supported in part by the National Science
Foundation under Grant CRI CNS-0855248, Grant EPS-0701890, Grant EPS-
0918970, and Grant MRI CNS-0619069.
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