J Supercomput
DOI 10.1007/s11227-013-1060-2

Pre-execution data prefetching with I/0 scheduling

Yue Zhao - Kenji Yoshigoe - Mengjun Xie

© Springer Science+Business Media New York 2013

Abstract Parallel applications suffer from I/O latency. Pre-execution I/O prefetching
is effective in hiding I/O latency, in which a pre-execution prefetching thread is created
and dedicated to fetch the data for the main thread in advance. However, existing pre-
execution prefetching works do not pay attention to the relationship between the main
thread and the pre-execution prefetching thread. They just simply pre-execute the I/O
accesses using the prefetching thread as soon as possible failing to carefully coordinate
them with the operations of the main thread. This drawback induces a series of adverse
effects on pre-execution prefetching such as diminishing the degree of the parallelism
between computation and I/O, delaying the I/O access of main threads, and aggravating
the I/O resource competition in the whole system. In this paper, we propose a new
method to overcome this drawback by scheduling the I/O operations among the main
threads and the pre-execution prefetching threads. The results of extensive experiments
on four popular benchmarks in parallel I/O performance area demonstrate the benefits
of the proposed approach.

Keywords Parallel application - I/O latency - Pre-execution prefetching -
I/0O scheduling

Y. Zhao (<) - K. Yoshigoe - M. Xie

Department of Computer Science, University of Arkansas at Little Rock,
2801 S. University Avenue, Little Rock, AR 72204, USA

e-mail: yxzhao@ualr.edu

K. Yoshigoe
e-mail: kxyoshigoe @ualr.edu

M. Xie
e-mail: mxxie @ualr.edu

Published online: 25 December 2013 &\ Springer

Y. Zhao et al.

1 Introduction

Parallel applications execution suffers from large latency of I/O accesses. The poor I/O
performance has been attributed as a critical cause of the low sustained performance
of parallel systems [1—4]. While the computational power of supercomputers keeps
increasing rapidly with every generation, the same is not true for their I/O subsystems,
and the data access rates of storage devices have not kept pace with the exponential
growth in microprocessor performance [5]. This is called I/O wall problem, which has
become a critical issue that limits the performance of parallel applications. Numerous
works have been conducted to resolve this I/O wall problem. However, the I/O latency
has not been relieved remarkably.

Works on prefetching [6—15] can reduce the I/O waiting time by fetching the data
to be read closer to CPU in advance. However, these traditional prefetching strategies
are conservative and cannot guarantee the prefetching accuracy [16]. Recently, a pre-
execution prefetching approach [16,17], in which a pre-execution prefetching thread
(PT) is created and dedicated to fetch the data for the main thread (MT) in advance,
has been proposed to hide the I/O latency with computation. However, by simply
pre-executing the I/O accesses with PT as soon as possible they not only miss much
opportunities to overlap the pre-executed I/O accesses with the computation but also
induce many I/O resource competitions to both local process and the whole system. In
the worst scenario, all MT and PT 1/0O accesses collide, which results in the number of
simultaneous I/O accesses in the system quite higher than that under normal execution.
The competitions among large number of concurrent I/O accesses will result in the
system aggregate bandwidth decreasing even I/O congestion. To our best knowledge,
among both the pre-execution prefetching and the traditional prefetching works, so far
there is no I/O prefetching-related work paying attention to the relationship between
the pre-executed and normal executed I/O accesses.

In this work we propose a new method to overcome this drawback in the existing
pre-execution prefetching works by actively scheduling the I/O accesses launched
by MTs and PTs. As a preliminary step of this work, study [18] first introduces /O
scheduling into the normal and pre-executed I/O accesses in I/O prefetching direction.
However, it only schedules the I/O accesses within a process, which is not enough to
fully avoid the impact on normal I/O accesses induced by pre-executed I/O accesses
in the whole-system scope. On the other hand, the proposed new method schedules
the I/O accesses both in intra-process and the whole-system scopes.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the motivation of this work. Section 4 presents pre-execution
prefetching with I/O scheduling (PPIOS). Section 5 details the experiment designs
and results. Section 6 concludes this paper.

2 Related work
In order to improve I/O performance quite a number of works have been done. Dur-

ing the last decade, a remarkable advancement in I/O parallelism has been achieved.
Concretely, improvement takes place in disk-level parallelism, file-system level par-

@ Springer

Pre-execution data prefetching with I/O scheduling

allelism (e.g., parallel file systems such as Lustre file system [19], PVES [20] and
GPEFS [21]) and application-level parallelism [22]. Elevated degree of I/O parallelism
accomplishes the highly increased I/O throughput. However, this advancement in I[/O
parallelism is accompanied with a much more expeditious development of parallel
processing both on hardware and software, so it is still not capable of reducing the
I/0O latency effectively. When it comes to the case in which a parallel application
has a large number of isolated or small I/O accesses the effectiveness is significantly
reduced. Also, to the application-level I/O parallelism the speedup is not satisfying
[17,23] and file system configuration dependent. Even worse, high application-level
I/O concurrency may also increase the file system workload and aggravate the I/O
resources competition, which will even decrease the I/O performance conversely.

The Adaptable 10 System (ADIOS) [24-26] and non-blocking I/O [27] can gain a
high I/O performance improvement but they require application modification [27,28].
And the non-blocking I/O work [27] only looks at write operations; how to deal with
read operation well is a challenge for non-blocking I/O.

Studies [29-32] have shown that many parallel I/O accesses are small, non-
contiguous, and irregular. Motivated by this observation, a number of strategies, such
as collective I/O [1,33] and data sieving [30,33], have been proposed to combine small
I/0 requests into large ones. By reducing the number of I/O requests and transferring
more data per request these approaches can improve the I/O performance signifi-
cantly in ideal cases. However, their effectiveness is application dependent. Due to the
inherent nature of applications, there are still many small I/O requests that cannot be
eliminated [16].

I/O prefetching for hiding I/O latency has been extensively studied [6—15]. How-
ever, these traditional prefetching strategies are conservative and most of them can-
not guarantee the prefetching accuracy [16]. Incorrect prefetching not only results in
the cache resource waste but also increases the I/O workload of system, which will
affect the system I/O performance conversely. Although the compiler-based prefetch-
ing approach [11,13] can accomplish high accurate prefetching, it cannot deal well
with the irregular applications [34], and many parallel applications are irregular.

Considering that computing power is plenty but I/O access performance is the
bottleneck; recently, more and more attention has been paid to trading the excessive
computing power with I/O access. Data compression and I/O pre-execution prefetching
are two active research topics in this direction.

Studies [35] and [36] use data compression scheme to reduce 1/O activities. How-
ever, limited by the data condensability, compression rate and extra overhead on the
system management, the exploitation of data compression approach in practice is
restricted.

Chen et al. [16] first proposed the pre-execution prefetching approach to mask the
I/0 access with computation. In this approach, a helper thread is created and dedicated
to read operations and runs ahead of main thread. Experimental results in [16] verify
that pre-execution I/O prefetching approach is effective in reducing I/O access latency.
Besides, it is quite practicable because the original applications can be converted to
pre-execution prefetching version automatically using a pre-compiler [16]. In order
to overcome the limitation of Chen’s work due to read after write (RAW) dependency
and further extend the computation and I/O concurrency, Zhao et al. [17] proposed

@ Springer

Y. Zhao et al.

a parallel pre-execution prefetching (PPP) approach. Concretely, it employs a new
thread to conduct each dependent read prefetching. Thus, the original pre-execution
prefetching thread does not need to stall to wait any write operation to be finished
by the main thread. When RAW dependency is encountered there are multiple pre-
execution prefetching threads progressing synchronously, which achieves the parallel
pre-execution prefetching.

3 Motivation
3.1 Pre-execution I/O prefetching

Chen et al. [16] proposed a pre-execution prefetching approach (PP) to hide the /O
latency of parallel applications. The basic idea is to pre-execute a portion of code on
each process to identify future I/O references, and then fetch the data closer to CPU
in advance in order to overlap the computation and I/O access.

As Fig. 1 shows, the pre-execution prefetching is conducted via PT. Each original
process is transformed into a MT. To generate pre-execution prefetching code, the
original parallel application source code is transformed either by a source-to-source
pre-compiler or by the programmer’s intervention. PT runs ahead of MT so it can
produce effective prefetching for MT.

3.2 Drawback analysis

PP aims to overlap the computation and I/O access by creating a PT to work with the
MT in parallel. However, a portion of I/O accesses requested by PT may be overlapped
with the MT’s I/O accesses when the MT has I/O operations such as writes and those

[Parallel Applications |

g8

[Programmer's Intervention/Source-to-Source Pre-compiler l

Prefetching Library I
Cache l
Caching Library I

L 11 LTI

Enhanced
MPI-I1O Library

[File System |
[110 Network |
—* Request MT: main thread
—> Dpata PT: pre-execution prefetching thread

Fig. 1 Pre-execution I/O prefetching framework

@ Springer

Pre-execution data prefetching with I/O scheduling

900 == Stripe Count: 1

8001 -I-Stripe Count: E
=7 Stripe Count: 3
= 7001 == Stripe Count: 4
S 6001
Z 500
2 400 A
z .
57 300 A
& 200+

100 - ~

0
4 S 16 32 64 128
Number of Processes

Fig. 2 Bandwidth with diverse data accessing

reads that cannot be conducted by PT early enough. In other words, this portion
of pre-executed I/O accesses fails to be hidden by computation. This issue will not
only diminish the degree of the parallelism between computation and I/O but also
induce competitions and delay the MT’s I/O access. Even worse, these competitions
and delay are not just limited to local MT’s I/O access. They act on all MTs’ I/O
accesses in the system. The impact on the progress of MTs goes against the purpose of
pre-execution prefetching to accelerate the execution of the original programs. And it
even overwhelms the benefit brought by pre-execution prefetching when the number of
processes using pre-execution prefetching is large, in which large number of concurrent
I/O accesses will decrease the system aggregate sustained bandwidth and end up
making the prefetcher counter-productive. Thus, I/O resource competitions introduced
by PTs limit the effectiveness and scalability of the pre-execution prefetching. In
the worst scenario, all MT and PT I/O accesses collide, which even results in I/O
congestion.

To evaluate the relationship between aggregate sustained bandwidth and the number
of concurrent I/O accesses in a system we performed an experiment on a Lustre file
system detailed in Sect. 5. We conducted concurrent I/O accesses (one access per each
process) on a chunk of data, which spans across different number of OSTs (stripe
count) in each sub-experiment using a stripe size of 1 MB.

Figure2 demonstrates the result with each process accessing diverse parts of data
respectively. The result under all the processes accessing the same data region is
shown in Fig.3. We observed that for each case in Fig.2 the aggregate bandwidth
decreased after the number of processes is beyond a certain point. When the processes
are accessing the same data region, the result is even worse. As shown in Fig.3 the
bandwidth starts to decrease when the number of processes is 2. These results confirm
that when there are too many concurrent I/O accesses progressing in a system, in
which the number of concurrent accesses is beyond the optimal number that system
can support, the competitions among the I/O accesses will impact the system aggregate
sustained bandwidth. Besides, for a small system such as ours, which has only 5 OSTs,
the optimal number of concurrent I/O accesses is very small as shown in Figs.2 and 3.

Figure 4 illustrates a program scenario and shows how this program is processed
under both normal execution and PP mode, where the size of each operated segment

@ Springer

Y. Zhao et al.

350 ~

—#— Stripe Count: 1
300 =~ Stripe Count: 2
= ~#— Stripe Count: 3
g 250 1 —— Stripe Count: 4
_‘E 200 -
T
s 1501 = —
z :
& 100
& 4
50
0
1 2 4 S 16
Number of Processes

Fig. 3 Bandwidth with same data accessing

Time
[>

Normal Execution Process
b o W o W2 jumew C3 -na-; o4 W |
PP Process
MT: WS C1 Wio| €2 wW2el €3 woWan| C4 i
PT: b B RSBt |

Fig. 4 Hiding I/O latency with PP. MT main thread, R read, number after R/W/C appearance order in
original process, W write, C computation, PT pre-execution prefetching thread

represents time duration. This program scenario is typical in real applications such
as big matrix manipulation and big file encryption where the process in the normal
execution mode sequentially processes a large volume of data. For each piece of
data, data reading, computation, and writing are executed in sequence. For simplicity,
Fig.4 only shows the progress situation of one process. Other processes in the system
experience equally in logic. After applying PP on the original program, the process
contains two threads, MT and PT. Since I/O access is the focus of PT and in this
scenario dominates its execution time, we can safely ignore the time incurred by
computation conducted by PT in Fig.4. As PT is designed to do data prefetching as
fast as possible, I/O overlap between PT and MT is easy to occur. Figure 4 shows that
under the PP mode, a high portion of I/O accesses of PT overlap with the MT 1/O
accesses. They are Ry overlapping with Ry and R4 overlapping with Wj. Only the /O
operation Rj3 is partially overlapped with the computation of MT. In this scenario, the
computation and I/O access concurrency achieved by PP are much limited. Worse, I/O
resource competitions induced both by local PT and other PTs in the system make all
the I/0O latencies under PP mode longer, and then delay the normal execution of MT.

Considering the competitions introduced to MTs’ I/O accesses by PTs and the
potential to further extend the computation and I/O access concurrency, a careful

@ Springer

Pre-execution data prefetching with I/O scheduling

I/O scheduling scheme for normal executed and pre-executed I/O accesses for pre-
execution prefetching is necessary.

4 Pre-execution prefetching with I/0 scheduling
4.1 Description

Motivated by the conclusion of Sect.3, we propose PPIOS approach to carefully
schedule the I/O accesses launched by the MTs and the PTs in the system. PPIOS uses
two classes of I/O scheduling: (1) intra-process I/O scheduling for scheduling MT and
PT I/O accesses within a process, and (2) inter-process I/O scheduling for scheduling
MT and PT I/O accesses launched by all processes in the system.

PPIOS assigns a higher priority to MTs’ I/O accesses to make sure they gain the
maximal system I/O resources. Under the intra-process level, within a process only
one I/0 access is allowed to progress at any time and MT’s I/O accesses are privileged.
By this design, PPIOS forces the pre-executed I/O accesses to overlap with the MT’s
computation, which not only extends the computation and I/O access concurrency
but also avoids the I/O competition within a process. Under the inter-process level,
among different processes, PTs’ I/O accesses give way to MTs’ I/O accesses when the
number of concurrent I/O accesses is beyond a certain value. Concretely, assuming
the optimal number of concurrent I/O accesses a system supports for a certain access
pattern, which we call the threshold value of a system for that pattern, is n and there
are m MTs’ I/O accesses progressing. Then, only n —m PTs’ I/O accesses are allowed
to progress. In this work, we assume that all I/O accesses follow the same access
pattern for simplicity. In case, the total number of ongoing I/O accesses has already
reached the threshold value and a new MT’s I/O access is launched, one of the ongoing
PTs’ I/0 accesses, if there are, will be chosen by PPIOS to suspend and give way to
the new launched MT’s I/O access. The first choice is the local PT’s I/O access. The
reason has been discussed at the beginning of this paragraph. If no local PT’s I/O
access is ongoing, the selection criteria would be cost minimizing. Figure 6 shows
the working scenario of PPIOS when it forces PT I/O accesses to give way to MT
I/O accesses. For comparison we show the corresponding working scenario of PP
in Fig.5.

The advantage of PPIOS over PP is illustrated in Fig.7, which compares how
PPIOS and PP progress in the scenario mentioned in Sect.3. In Fig.7, the size of
each operated segment represents time duration. In this ideal case, PPIOS maximizes
the PT I/O accesses and the MT computation concurrency. Also, it avoids the /O
competitions introduced by both local PT and other PTs in system.

In summary, the benefit of PPIOS is twofold. First, it extends the degree of
computation and I/O concurrency of an application, and then further hides the I/O
latency. Second, PPIOS avoids the impact on system I/O throughput introduced by
PTs to achieve the best effectiveness and scalability of pre-execution prefetching
approach.

The logic and action of I/O scheduling proposed by PPIOS are realizable. The
intra-process I/O scheduling can be conducted in the same way as Zhao et al. [18]

@ Springer

Y. Zhao et al.

P, P | P,

q
I |]
L L
! _1/Ocompetition f i
17" AFwithinaprocess ! |
LY L. I/] I
,'—-;T —————— -—-L————— ——————— -gh
[! E 1/0 competition | A\
. ! ! among processes v/
e = e —— o e e e e e = R —— = = -
AV AV AV
File System
T T
1
AN 'i'“-“:i’Original numkercf requests <=—-—- 114
SE
1/O Network
P: process MT: main thread PT: pre-execution prefetching thread
------ {> onePTI/Orequest ——» one MT I/O request
Fig. 5 1/O workflow of PP
Po P P P,

Intra-process I/t
Scheduler

Intra-process 1/
Scheduler

T) &

(Inter-process /0 Scheduler)
Il * Il
)) File System)
i---—--} Reduced number of requests <--—---
1/0O Network
P:process MT: main thread PT: pre-execution prefetching thread
—————— {> onePTI/Orequest ——» oneMT I/O request

Fig. 6 1/0 workflow of PPIOS

does, in which a conditional variable is employed. By extending the functionality

of existing I/O schedulers the inter-process I/O scheduling proposed is

easy to be

implemented as well. We take the I/O scheduler proposed by Vishwanath et al. [37]
as instance and briefly describe how to implement the proposed inter-process 1/O

scheduling on it, which is depicted in Fig. 8. In order to mitigate resource

contention

study [37] introduces an I/O work-queue model to control the number of ongoing
I/0O accesses in the system. To implement the inter-process I/O scheduling of PPIOS

on this work-queue model, when en-queuing a job we assign a higher

priority to

the MT’s I/O accesses than those launched by PTs. I/O request APIs are updated by

appending an additional parameter indicating the category (MT or PT) of

@ Springer

the thread,

Pre-execution data prefetching with I/0 scheduling

Time
® »

Normal Execution Process

o e v s o o e o e
PP Process
MT: [WERINS C1 owren| €2 wwae| €3 ewse| c4 wwan

PPIOS Process

MT: WREM €1 sWis| €2 w2e| €3 wse| C4 oWy
PT: |sSmile|Ra-sulies R~ |Stil-Re~|

Fig. 7 Hiding I/O latency with PP and PPIOS. MT main thread, C computation, R read, W write, PT
pre-execution prefetching thread, arrows wake up notification, number after R/W/C appearance order in
original process

which launches the I/O request. The number of I/O accesses in the executing pool is
equal to the system threshold value and it can be informed via an environment variable
during job submission as done in [37].

4.2 Dependency consideration

In pre-execution I/O prefetching approach, PT runs a fragment of code ahead of MT
to prefetch data into the prefetching cache in advance. It is possible that the PT’s I/O
access relies on previous writes from MT. In order to address this RAW dependency
issue we adopt the method proposed in [17]. Concretely, a waiting thread (WT) is
created by PT for each dependant I/O access of PT. And the PT itself skips current
dependent access and keeps running ahead to prefetch future reference files. The
scheduler controls the number of concurrent prefetching threads according to the
current I/O workload and system resources. Higher priority is assigned to nearer used
data prefetching.

4.3 Conceptualization

As a preliminary step for implementing the PPIOS, we have conceptualized it. We
employ MPI protocol and its parallel API to actualize the execution of parallel appli-
cations. In order to implement PT co-working with MT within each process, we adopt
the POSIX threads (Pthreads) multi-threaded programming standard. We conduct the
parallel file system access through the ROMIO MPI-IO implementation in Open MPL
Figure 9 shows the software stack we use to implement PPIOS.

We preliminarily implement the I/O scheduling action of PPIOS in the user appli-
cation layer by employing inter-thread communication and several global variables
visible for all processes in the system.

@ Springer

Y. Zhao et al.

CO"W'I""“(J Process 0 Process 1 Process 2 Process n
nhode
e —
Y A 1
Collective Network]
//
User Space PTO PT1 MTp - /
---7-:3* P =n
»
MT and PT 1O requests scheduler]
A y
1o o IMT‘MT' IMTI?TIP\" | FTI I ‘
node Queus : i " |

(Thd 0) -« (Thd k }-—t== K = system threshold vale

Executing
Pool
I
i
v y !
Kernel Space
5
[10 Hetwork
T
!
[Storage
—® O request MT, PT and Thd stand for the 10 request lanched by them
--—[> Datastream respectively

Fig. 8 Inter-process I/O scheduling implement mechanism

N
Parallel Parallel Parallel Parallel User Xislicats
Application Application Application Application SEEADDICAlons

J

i

‘ Pthreads + MPI Parallel API interface
h k -~ -~
A J r v A 4
‘ ROMIO | Parallel 'O laver
3 k s
r Y A 2
Lustre GPFS PVFS Parallel file systems

Fig. 9 Software stack

Intra-process /0O scheduling We employ a condition variable and Pthreads inter-
thread message passing mechanism to accomplish the intra-process I/O scheduling.
The condition variable is used as a flag managed by MT. Initially the flag is set as

@ Springer

Pre-execution data prefetching with I/O scheduling

unlocked. When MT starts performing I/O access it first locks the flag. Locked flag
indicates that PT cannot launch any I/O accesses. Otherwise, the prefetching is allowed.
When PT encounters a read function, it has to check the flag’s status first. If the flag is
locked, then PT goes into the suspend status. When MT finishes its I/O access it unlocks
the flag and sends a notification to wake up and allow PT to prefetch data into cache.

In order to implement the preempting logic of MT’s I/O access over PT’s 1/O
access, we split the original PT’s I/O access into sequentially executed sub-accesses
(the access size of each sub-access is far less than the access size of most MT’s I/0
accesses), which does not impact the prefetching rate proved by our test. By blocking
a certain sub-access of PT’s I/O access we achieve that MT’s I/O access preempts the
original PT’s I/O access.

Inter-process I/0O scheduling By employing global variables, which indicates the
number of related I/O accesses and can be accessed by all processes, we make it visible
to all processes the number of ongoing MT’s I/O accesses and PT’s I/O accesses in
the system, respectively. Based on this information and the system threshold value
each process controls its prefetching according to the policy described in Sect. 4. The
global variables can be kept by a small file located either in memory or storage. The
preempting of MT’s I/O access over PT’s I/O access is implemented in the same way
stated in former subsection. Thus, we implement the scheduling of normal executed
and pre-executed I/O accesses in the whole-system scope.

4.4 Analysis

Optimal analysis PP introduces extra competitions to MTs’ I/O accesses of the original
processes. In the worst scenario, all MT and PT I/O accesses collide and result in
I/O congestion. Then, the original processes execution can be delayed infinitely. By
introducing I/O scheduling PPIOS not only avoids this issue but also further extends
the degree of I/O access and computation concurrency of a parallel application. In this
section, we analyze the optimal speedup achieved by PPIOS over normal execution.
Table 1 describes the notations.

The total execution time of a process under a certain mode is actually MT’s execu-
tion time, SO

Table 1 Notations

Nc¢ The number of segments of computation in the original process
Nw The number of segments of write operation in the original process
Ng The number of segments of read operation in the original process
TNormal The total execution time of the process under normal execution
Tppros The total execution time of the process under PPIOS mode

TrH 0P _SN_MO The execution time of a certain operation (TH: thread; OP: operation; SN: serial
number; Mode: execution mode (e.g., Ty T R i Normal refers to the execution
time of MT’s ith segment of read under normal execution mode))

NtH oP MO The number of segments of a certain operation (e.g., Npr r_ppjos refers to the
number of segments of read conducted by PT under PPIOS mode)

@ Springer

Y. Zhao et al.

NMT_R_Mode NMT_W_Mode
Trmode = Z TMT_R_i_Mode + Z Tyt _w_j_Mode
i=1 j=1
NMT_C_Mode
+ D Tur ck Mode €))
k=1

Here, Mode € {Normal, PP, PPIOS}. Under normal execution mode MT conducts all
the operations exactly identical to how the original process does. And under PPIOS
all write and computation operations are conducted by MT with the same progress
time as those under normal execution mode, which is true when PPIOS completely
avoids the disturbance introduced by prefetching to the I/O accesses of all MTs in the
system. Thus,

Nr Nw
TNormal = Z TmT_R_i_Normal + Z TmT_w_j_Normal
i=1 j=1
Nc¢
+ Z TM T_C_k_Normal (2)
k=1
Nmr_r_PPIOS Nw
Tppios = Z Tyr_r_i_ppPios + Z TymT_w_j_Normal
i=1 j=1
Nc¢
+ Z TMT_C_k_Normal (3)
k=1

In the optimal case, all the data to be read by the process are prefetched by PT with
completely overlapping with the computation of MT, then,

Nw Nc¢
Tepios = D TuT w_j Normal + D TMT _C_k Normal “
j=1 k=1

The speedup achieved by PPIOS over the normal execution mode is

Speedup (pp10s/Normal)
= TNormat/ Tppios

Nr Nw Nc
Zi:l TMTfRfifNormal + Zj:l TMT?W?j?Normal + Zkzl TMT?C?k?Normal

Nw Ne¢
Zj:l TMT?W?j?Normal + Zkzl TMT?CchNormal

N, Nc
< Z,':Rl TMT_R_i_Normal + Zk:l TMT_C_k_Normal

(&)

N¢
Zk:] TMT_C_k_Normal

@ Springer

Pre-execution data prefetching with I/O scheduling

To hide all the read latency by computation, there must be

Ng Nc
Z TMT_R_i_Normal < Z TMT_C_k_Normal (6)
i=1 k=1
With
Nc Ng
lim Z TMT_C_k_NormaI = Z TMT_R_i_Normal (7)
k=1 i=1
So,

Nc¢ Nc¢
Speedup ppios/Normal < 2 2 TmT_C_k_Normal / z Tmt_c_k_Normat =2 (8)
k=1 k=1

Namely,

max {Speedup ppiosNormary} = 2 ©

So, in the optimal scenario, PPIOS can hide all the read latency suffered by a process
and achieve 50 % total execution time reduction of that process over normal execution.

The 2-time speedup can be also achieved solely by intra-process I/O scheduling
under the ideal circumstance as shown in [18], except that in practical system, intra-
process I/O scheduling is still insufficient to eliminate the cost of other processes’
I/O access rate and the decrease of system I/O throughput induced by aggressive
prefetching. Intra-process I/O scheduling can only avoid the impact on MT’s normal
I/0 requests induced by pre-execution prefetching within single-process scope. Thus,
the prefetching activities of local process may still introduce competitions to nor-
mal I/O requests of other processes. On the other hand, inter-process I/0 scheduling
coordinates scheduling of prefetching I/O requests and normal I/O requests among
processes in a distributed system to help optimize the progress order of the normal I/O
and pre-execution I/O requests issued by diverse processes. This feature not only guar-
antees assigning the limited system I/O resource to the more urgently demanded I/O
request further but also avoids the system I/O throughput cost caused by pre-execution
prefetching.

Worst case analysis Once MT’s 1/O requests are continuously launched the PT’s
I/0 requests will encounter starvation. This is consistent to the system resource assign-
ment requirement. In case the system instantaneous I/O workload is high I/O requests
prefetching the future accessed data should give way to the demanded I/O requests
asking for immediately needed data. This prefetching request starvation will not affect
the normal execution of its master process. Failing to find the demanded data in mem-
ory buffer the process will issue normal I/O requests through MT. Thus, in the worst
case the speedup of PPIOS is 1.

@ Springer

Y. Zhao et al.

Cost Over the existing pre-execution prefetching approach, in which I/O-related
operations conducted by PT do not involve communication with other processes in
general [16], PPIOS requires an I/O scheduling, which is quite light-weight in cost.
Throughout our implementation of the I/O scheduling, only several variables and inter-
thread messages are added to the existing pre-execution prefetching implementation.
Also, the messages are thread control messages with no additional data transported,
which are quite small in size. Thus, the overhead caused by I/O scheduling is negligible,
especially, when it is compared to the huge workload of parallel applications. The cost
does not impact the effectiveness of PPIOS, which is also verified by the performance
improvement achieved by PPIOS as shown in Sect. 5.

Correctness First, the existing pre-execution prefetching approach can guarantee
the correctness of the original programs. Second, the I/O scheduling introduced by
PPIOS only reschedule the I/O accesses time, so it does not affect the logical behavior
and accuracy of MT. Thus, the MT in the system running with and without PPIOS
will logically behave identically. In summary, PPIOS does not affect the correctness
of the original programs.

5 Experiment

5.1 Platform

Our experiments were conducted on a 66-node 528 processors Linux-based cluster.
This cluster is composed of 1 frontend node that runs TORQUE resource manager and
Moab scheduler, 1 login node and 64 compute nodes. Each compute node has 16 GB of
RAM and 2 CPU sockets, each with quad core Intel Xeon 2.66 GHz CPU. Depending
on the number of processes in experiment, we used the subset of this cluster with size
ranging from 1 to 16 compute nodes. File system is Lustre parallel file system. There
are five storage targets (OST), each with a RAIDS5 set with 8 internal 1TB disks. In
this experiment we striped the input files across 4 OSTs with stripe size being 1 MB.
We dynamically assign the buffer size as demand in each node, which can be large
enough for our experiments as each node has 16 GB of RAM. Software environment
refers to Fig. 9.

5.2 Benchmarks

In order to evaluate the effectiveness of PPIOS, we measured its performance on
four benchmarks shown in Table 2. We chose these benchmarks because they are
representative kernels from data statistical and data mining applications.

5.3 Design and results

Based on the chosen benchmarks we designed two experiments. In the first exper-
iment, we evaluated the benefits of PPIOS on single benchmark accessing the file
system. To simulate the real HPC working scenario, in which there are multiple jobs
being conducted synchronously, in the second experiment we ran four benchmarks

@ Springer

Pre-execution data prefetching with I/O scheduling

Table 2 Benchmarks

Name Description

SUM Data statistical operation that reads the input file and returns the sum of all its items
AVG Data statistical operation that reads the input file and returns the average of all its items
DSCAL Data mining operation that multiplies every item in the input file by a scalar [38]
GREP Data mining operation that searches matching string patterns from the input file

concurrently. All the benchmarks processed the input file chunk by chunk with the
chunk size being 1 GB except for special statement. For each benchmark the input
file is 6 GB in size and the data type is integer. We compared the experimental results
measured under normal execution, PP and PPIOS mode.

Experiment #1: Single benchmark running in the system We selected benchmarks SUM
and GREP to execute separately as a single benchmark accessing the file system. For
GREP the item of string is an integer number and the length of string pattern to search
is 30.

Figure 10 shows the execution time results of benchmarks SUM and GREDP, respec-
tively. The execution time under PPIOS mode is reduced by up to 42.6 and 20.9 %
over normal execution and PP mode, respectively. As a reference, they also show the
application’s execution time under the theoretically optimal scenario, in which the /O
latency would be completely masked. When the number of the processes is large the
computing workload assigned to each process is quite low, which limits the amount of
I/0O latency hidden by computation. Thus, high execution time reduction percentage
under PPIOS mode can be achieved with moderate number of parallelisms as observed
in [17]. Due to the I/O competitions introduced by PP when the number of processes
is large the execution time under PP even overwhelms that of the normal execution.
PPIOS, on the other hand, can achieve execution time reduction compared to the other
two modes in all cases.

Figure 11 shows the results of I/O latency during the whole execution of the bench-
marks. In most of cases, a considerable I/O latency reduction percentage has been
achieved by PPIOS over the other two modes, which is up to 83.3 % over normal
execution mode and 42.7 % over PP mode. When the number of processes is equal to

e B Normal Execution 290 M Normal Execution
Z g mPP T 1401 mPP
g # PPIOS g 1204 u PPIOS
= 601 m Optimal = 100 m Optimal
§ § =
- E=] 0 4
3 3
2 g 40
i w204
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of Processes Number of Processes
(a) sum (b) GrEP
Fig. 10 Execution time: a SUM, b GREP

@ Springer

Y. Zhao et al.

40 - 40 -

W Normal Execution B Normal Execution
354 mPP 35 4 m PP
= &7 mPPIOS < 301 = PPIOS
T 25 g 25
c £
@ 204 % 20
E 15 = 15
2 10 2 10+
5 5
- | A B M | i
1 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of Processes Number of Processes
(a) sum (b) crer

Fig. 11 1/O latency: a SUM, b GREP

Fig. 12 1/0O latency reduction of 1.2 -
GREP

=]
o
1

-2-1G
—4=512M —=256M
—#=128M ~0-64M

o
i
1

o
8]
1

1/O Latency Reduction
o
(=21

(=}

1 2 4 8 16 32
Number of Processes

4 and 32 in benchmark SUM and GREDP, respectively, the I/O latency starts to dom-
inate the execution time of process. Thus, the percentage of I/O latency that can be
hidden by computation decreases, which results a zoom of I/O latency under both
PP and PPIOS mode. Most importantly, the PPIOS outperforms the normal and PP
modes for all process sizes being evaluated while the normal and PP modes outper-
form/underperform over one another at certain process sizes being evaluated.

Figure 12 shows the I/O latency reduction for GREP achieved by PPIOS over normal

execution mode as the chunk size changes. In some cases, the I/O latency reduction
is close to 100 %. It demonstrates that in these cases PPIOS can almost completely
hide the I/O latency suffered by GREP by scheduling the pre-executed I/O operation
to strictly overlap with computation. When the number of processes is larger than or
equal to 16, the reduction drops. The reason is the same with former analysis that the
computation executing time percentage starts to decrease and I/O latency dominates
in each process.
Experiment #2: Multiple benchmarks concurrently running in the system We ran all
the four benchmarks in Table 2 concurrently with different files as input respectively.
As shown in Fig. 2, under striped count being 4, for our system the highest bandwidth
is achieved when the number of processes is 16 for diverse data accessing. Thus, in
this experiment we set the threshold value of system as 16.

Figure 13 shows the execution time results, in which the number of processes refers
to total number of processes employed, which are equally distributed to each bench-

@ Springer

Pre-execution data prefetching with I/0 scheduling

0 W Normal Execution 120 1 m Normal Execution

Z 100 mPP % 100 - m PP

£ o PPIOS

E 80 W PPIOS E

= =

8 5

5 s

g 2

% 3

w @

Number of Processes Number of Processes
(a) sum (c) DScaL
120 4 m Normal Execution e 2099 :;;)rmal Exetution
Z 100 mPP o
v 1 PPIOS s MEPIOS
E 80 E
-
< 60 4 E 100 A
— L
5 40 1 1 3 E
§ ‘ g 50 4 =
X 20 | &5 |
4 8 16 32 64 4 8 16 32 64
Number of Processes Number of Processes
(b) ave (d) cRrEP

Fig. 13 Execution time: a SUM, b DSCAL, ¢ AVG, d GREP

mark. The execution time under PPIOS mode is reduced by up to 41.1 and 27.7 %
over normal execution and PP, respectively.

Figure 14 shows the results of I/O latency suffered by the benchmarks. In most of
cases, a considerable I/0O latency reduction percentage has been achieved by PPIOS
over the other two modes, which is up to 80.7 % over normal execution mode and
29.8 % over PP mode.

For all tested benchmarks, the performance gained by PPIOS over normal execution
mode shrinks when the number of processes employed is large (e.g. 32, 64). There
are two reasons. First, it is due to that within each process the ratio of computation to
I/0 latency decreases, which results in less I/0O latency can be hidden by computation.
Second, under heavy I/O workload scenario PT’s I/O accesses are more likely to be
forced by PPIOS to give way to those launched by MTs to avoid aggravating the I/O
competition in the system.

In Experiments #1 and #2, compared to PP, though PPIOS decreases the prefetching
rate by sleeping some prefetching operations to give way to the I/O accesses launched
by MTs, PPIOS still achieves the I/0O performance improvement over PP. First reason
is that it successfully hides all the pre-executed I/O accesses latency with computation
within a process. Second, it avoids the impact on MTs’ I/O accesses introduced by
prefetching conducted both by local and other processes in the system, which guaran-
tees the complete time of MTs’ I/O accesses.

For Experiments #1 and #2 when the number of processes employed is larger
(e.g. 128, 256), in the original program the I/O latency will highly dominate the
execution time of each process. Take SUM in Experiment #1 for instance, when 128

@ Springer

Y. Zhao et al.

%1 m Normal Execution 707 m Normal Execution
e mpp 60 | mPp
= 504 = PPIOS % 504 = PPIOS
& 50 4 z
5 40 £ 401
® ® 304
6' 30 1 6.
= 20- Q 204
10 10 4
0 0-
4 8 16 32 64 4 8 16 32 64
Number of Processes Number of Processes
(a) suM (¢) DSCAL
0 - i
80 - = Normal Execution 3 : :;I:rmal Execution
mPP — 40 4
= 604 w PPIOS = wPPIOS
g g 30
H @
S 40 -
5 g 20
2 20- s)
0 0
4 8 16 32 64 4 8 16 32 64
Number of Processes Number of Processes
(b) avG (d) Grep

Fig. 14 1/0 latency: a SUM, b DSCAL, ¢ AVG, d GREP

processes are employed, the computing duration of each process is only about 0.365.
It is far less than that of I/O latency, which is more than 10s. This is true for other
three benchmarks as well. Pre-execution prefetching approach is designed to hide
I/0O latency with computation [16] and performs well in applications with moderate
ratio of I/0 latency to computation. Thus, results under larger process size in above
experiments for our small system are meaningless.

Results of above experiments confirm that PPIOS has more potential to hide /O
latency suffered by parallel applications and can successfully eliminate the impact on
the normal executed I/O accesses introduced by prefetching in the whole-system scope.
In summary, PPIOS achieves better effectiveness and scalability than the existing pre-
execution prefetching.

6 Conclusion

With the rate of computing power growing much faster than that of storage I/O access,
parallel applications suffer more from I/O latency. In this study, we propose the PPIOS
approach to improve the I/O performance of parallel applications. The main contri-
bution of this study is that we employed the active scheduling or careful coordination
on the normal and pre-executed I/O accesses in both intra- and inter-process lev-
els to maximize the overlap between the pre-executed I/O accesses and computation
and eliminate the impact on normal executed I/O accesses introduced by prefetch-
ing, which is the first work to the best of our knowledge in the research direction of

@ Springer

Pre-execution data prefetching with I/O scheduling

I/0O prefetching. The extensive evaluation results verified the benefits of the proposed
approach.

Acknowledgments This work was supported in part by the National Science Foundation under Grant
CRI CNS-0855248, Grant EPS-0701890, Grant EPS-0918970, and Grant MRI CNS-0619069.

References

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Chen Y, Sun XH, Thakur R, Roth PC, Gropp W (2011) LACIO: a new collective I/O strategy for
parallel I/O systems. In: Proceedings of international parallel and distributed processing symposium
(IPDPS). IEEE, New York, pp 794-804

Sun X-H, Chen Y, Wu M (2005) Scalability of heterogeneous computing. In: Proceedings of 34th
international conference on parallel processing

Liu N, Fu J, Carothers CD (2010) Massively parallel I/O for partitioned solver systems. Parallel Process
Lett 6:1-17

Kesavan M, Gavrilovska A, Schwan K (2010) On disk I/O scheduling in virtual machines. In: WIOV
10, March 2010

. AliN, Carns PH, Iskra K, Kimpe D, Lang S, Latham R, Ross RB, Ward L, Sadayappan P (2009) Scalable

1/0 forwarding framework for high-performance computing systems. In: CLUSTER. pp 1-10

Ding X, Jiang S, Chen F, Davis K, Zhang X (2007) DiskSeen: exploiting disk layout and access history
to enhance I/O prefetch. In: Proceedings of USENIX annual technical conference

Kotz DF, Ellis CS (1990) Prefetching in file systems for MIMD multiprocessors. In: IEEE transactions
on parallel and distributed systems, vol 1, no 2

May J (2001) Parallel I/O for high performance computing. Morgan Kaufmann Publishing, Los Altos
Papathanasiou A, Scott M (2005) Aggressive prefetching: anidea whose time has come. In: Proceedings
of the 10th workshop on hot topics in operating systems

Patterson RH (1997) Informed prefetching and caching. Carnegie Mellon Ph.D. Dissertation CMU-
CS-97-204

Son SW, Kandemir M, Karakoy M, Chakrabarti D (2009) A compiler-directed data prefetching scheme
for chip multiprocessors. In: Proceedings of the 14th symposium on principles and practice of parallel
programming. pp 209-218

Ravichandran N, Paris JF (2005) Making early predictions of file accesses. In: Proceedings of 4th
International Inf. Telecommun. Technol. pp 122-129

. Brown AD, Mowry TC, Krieger O (2001) Compiler-based I/O prefetching for out-of-core applications.

ACM Trans Comput Syst 19(2):111-170

Seelam S, Chung IH, Bauer J, Wen HF (2010) Masking I/0 latency using application level I/O caching
and prefetching on Blue Gene systems. In: Proceedings of IEEE international symposium on parallel
distributed processing (IPDPS). pp 1-12

He J, Sun X-H, Thakur R (2012) KNOWAC: I/O prefetch via accumulated knowledge. In: Proceedings
Of IEEE international conference on cluster computing. pp 429-437

Chen Y, Byna S, Sun XH, Thakur R, Gropp W (2008) Hiding I/O latency with pre-execution prefetching
for parallel applications. In: Proceedings of SC 2008. pp 1-10

Zhao'Y, Yoshigoe K (2012) Hiding I/O latency with parallel pre-execution prefetching. In: Proceedings
of the 24th IASTED international conference on parallel and distributed computing and systems (PDCS
2012), November 2012. pp 162-169

Zhao 'Y, Yoshigoe K, Xie M (2013) Pre-execution data prefetching with inter-thread I/O scheduling. In:
Proceedings of the 2013 international supercomputing conference. Lecture notes in computer science
(LNCS), vol 7905. Springer, Berlin, pp 395-407

Schwan P (2003) Lustre: building a file system for 1000-node clusters. In: Proceedings of Linux.
Symposium, July 2003

Ligon W, Ross R (2003) Parallel I/O and the parallel virtual file system. In: Beowulf cluster computing
with Linux. MIT Press, Cambridge, pp 493-534

Schmuck F, Haskin R (2002) GPFS: a shared-disk file system for large computing clusters. In: Pro-
ceedings of the 1st USENIX conference on file and storage technologies

Chen Y, Byna S, Sun X-H, Thakur R, Gropp W (2008) Exploring parallel I/O concurrency with
speculative prefetching. In: Proceedings of 37th international conference on parallel processing (ICPP
08)

@ Springer

Y. Zhao et al.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Margo MW, Kovatch PA, Andrews P, Banister B (2004) An analysis of state-of-the-art parallel file
systems for linux. In: The 5th international conference on Linux clusters: the HPC revolution 2004.
Austin, TX

Lofstead JF, Klasky S, Schwan K, Podhorszki N, Jin C (2008) Flexible io and integration for scientific
codes through the adaptable io system (adios). In: Proceedings of the 6th international workshop on
Challenges of large applications in distributed, environments. pp 15-24

Jin C, Klasky S, Hodson S, Yu W, Lofstead J, Abbasi H, Schwan K, Wolf M, Liao W, Choudhary A,
Parashar M, Docan C, Oldfield R (2008) Adaptive io system (adios). Cray Users Group

Lofstead J, Klasky S, Booth M, Abbasi H, Zheng F, Wolf M, Schwan K (2009) Petascale io using the
adaptable io system. Cray Users Group

Buettner D, Kunkel J, Ludwig T (2009) Using non-blocking I/O operations in high performance
computing to reduce execution times. Recent advances in parallel virtual machine and message passing
interface. Lecture notes in computer science, vol 5759. pp 134-142

Bent J, Gibson G, Grider G, McClelland B, Nowoczynski P, Nunez J, Polte M, Wingate M (2009) Pifs:
a checkpoint filesystem for parallel applications. In: Proceedings of conference on high performance
computing, networking, storage and analysis (SC” 2009)

Kotz DF, Nieuwejaar N (1994) Dynamic file-access characteristics of a production parallel scientific
workload. In: Proceedings of Supercomputing’94. pp 640-649

Reed D (2003) Scalable Input/Output: achieving system balance. The MIT Press, Cambridge
Madhyastha TM, Reed DA (2002) Learning to classify parallel Input/ Output access patterns. In:
Proceedings of IEEE transactions on parallel and distributed systems, vol 13, no 8

Smirni E, Reed DA (1997) Workload characterization of Input/Output intensive parallel applications.
In: Proceedings of the 9th international conference on computer performance evaluation: modeling
techniques and tools

Thakur R, Gropp W, Lusk E (1999) Data sieving and collective I/O in ROMIO. In: Proceedings of the
7th symposium on the frontiers of massively parallel computation

Solihin Y, Lee J, Torrellas J (2002) Using a user-level memory thread for correlation prefetching. In:
Proceedings of the 29th annual international symposium on computer architecture (ISCA), Anchorage.
Alaska, May 2002

Makatos T, Klonatos Y, Marazakis M, Flouris MD, Bilas A (2010) Using transparent compression to
improve SSD-based I/O caches. In: Proceedings of the 5th European conference on computer systems,
EuroSys 10, NY, USA. ACM, New york, pp 1-14

Welton B, Kimpe D, Cope J, Patrick C, Iskra K, Ross R (2011) Improving I/O forwarding throughput
with data compression. In: International conference on cluster computing, CLUSTER ’11. IEEE, New
York, pp 438-445

Vishwanath V, Hereld M, Iskra K, Kimpe D, Morozov V, Papka ME, Ross RB, Yoshii K (2010)
Accelerating i/o forwarding in ibm blue gene/p systems. In: SC. pp 1-10

Piernas J, Nieplocha J, Felix EJ (2007) Evaluation of active storage strategies for the lustre parallel
file system. In: Proceedings of Supercomputing, 2007 (SC *07)

@ Springer

	Pre-execution data prefetching with I/O scheduling
	Abstract
	1 Introduction
	2 Related work
	3 Motivation
	3.1 Pre-execution I/O prefetching
	3.2 Drawback analysis

	4 Pre-execution prefetching with I/O scheduling
	4.1 Description
	4.2 Dependency consideration
	4.3 Conceptualization
	4.4 Analysis

	5 Experiment
	5.1 Platform
	5.2 Benchmarks
	5.3 Design and results

	6 Conclusion
	Acknowledgments
	References

