
Understanding Secure and Usable Gestures for
Realtime Motion based Authentication

Yanyan Li and Mengjun Xie
University of Arkansas at Little Rock

Email: {yxli5, mxxie}@ualr.edu

Abstract—One promising approach to achieving strong authen-
tication is using gesture based behavioral biometrics, that is, user
authentication is based on how a gesture is performed. With
the advent of smart wearable devices, 3D motion gesture based
authentication becomes increasingly appealing. Understanding
3D motion gestures especially their security and usability is
fundamentally important but remains to be conducted. Towards
this goal, we perform an empirical study on the security and
usability of user-created 3D gestures using a realtime free-form
motion gesture authentication scheme we have developed. To
create a real-world authentication experience, in our experiment,
a participant sees the authentication result from his or her
wearing smartwatch in real time for each gesture test. Our
experiment consists of not only a set of self-tests but also a series
of attacks from easily launched random guessing attacks to much
more sophisticated and dangerous targeted mimicry attacks. Our
experimental results reveal several interesting findings on 3D
gestures’ security and usability including the correlation between
gesture categories and their performance and attack resistance,
and the effect of posture and psychological factor, which we
believe shed light on the future design of 3D motion gestures for
smart wearable devices.

I. INTRODUCTION

Identity authentication is critical to data security and privacy
but is lacking in effective techniques that are both secure and
usable especially for smart wearable devices. Leveraging the
popularity and advancement of mobile sensing technologies,
one promising approach to achieving strong authentication for
smart wearables is using gesture based behavioral biometrics.
Different from conventional physiological biometrics such as
fingerprints, behavioral biometrics exploits distinctive traits
innate in individuals’ behavior such as gestures and gaits.
Gesture-based behavioral biometric authentication verifies a
user based on how a gesture for the claimed identity is
performed by the user.

With the advent of smart wearable devices such as smart-
watches and smart wristbands, 3D free-form motion ges-
tures become increasingly appealing for behavioral biometric
authentication. Several gesture based authentication schemes
have been proposed for smart wearable devices (e.g., [1], [2]).
However, as an essential piece to making gesture based behav-
ioral biometrics as successful as passwords, a comprehensive
understanding of 3D motion gestures especially their security
and usability remains missing.

As a first step towards this goal, we perform an em-
pirical study on the security and usability of user-created
3D gestures using the REMOTE (realtime free-form motion

Fig. 1: A user performing a gesture in sitting

gesture authentication) scheme we have designed. We develop
a REMOTE mobile app for Android smartwatches and use
it to conduct the experiment. Our experiment is designed
to create real-world gesture authentication experiences by
allowing users to create their personalized 3D motion gestures
and showing the authentication result on the smartwatch in
real time for each gesture test. Our experiment consists of not
only a set of self-tests but also a series of attacks from easily
launched random guessing attacks to much more sophisticated
and dangerous targeted mimicry attacks. All those self-tests
and attacks are performed in two postures: sitting and standing.
Fig. 1 shows a participant in our experiment performing his
gesture using his left arm in the sitting posture.

Our experimental results reveal several interesting findings
on 3D motion gestures’ security and usability. For example,
we find that the user-created gestures can be grouped into three
categories and each of them exhibits different characteristics
in usability and security. We also find that the motion gestures
created in our experiment can effectively defeat both random
and content-aware attacks and most of them are highly resis-
tant to targeted mimicry attacks. Our findings also include the
effect of posture and psychological state on gestures’ security
and usability.

The main contributions of this work are as follows:
• We designed and implemented free-form gesture based

behavioral biometric authentication for smartwatches.
• We conducted an empirical study on user-created gestures

through a series of self-tests and attacks.
• Our experimental results reveal several findings and in-

sights on free-form gestures’ security and usability.
The remainder of this paper is organized as follows: We

summarize the related work in Section II and present the
design and components of REMOTE in Section III. We then
describe our experiment design in Section IV. We detail our
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evaluation in Section V and conclude the paper in Section VI.

II. RELATED WORK

Recent years have witnessed the increasingly popular appli-
cation of different physiological biometrics (e.g., fingerprint,
face, and retina) to user authentication [3], [4], [5], [6].
However, attacks on those biometrics are also increasingly
common (e.g., [7], [8], [9]). Representing humans’ unique
physiological characteristics, physiological biometrics is not
easy to change once being attacked. In addition, physiological
biometrics’ strong link with people’s real identity always raises
the privacy concern.

Behavioral biometrics such as gesture and gait is quickly
emerging as a promising alternative (and complementary) to
existing authentication methods. A number of schemes have
been proposed on applying 3D motion gestures to authenti-
cation using different types of sensing technologies, e.g., Wii
controller [10], Kinect depth-sensing camera [11], smart ring
[1] and smartwatch [2]. However, most previous studies on
3D motion gestures do not offer a real-life use experience
(i.e., realtime authentication feedback) in their data collection
and many focus on predefined gestures including our previous
work on smartwatch authentication with four predefined 3D
motion gestures [2]. There are numerous studies on 2D ges-
tures that are applied on the touchscreen of a smartphone or
tablet (e.g., [12], [13], [14], [15]). Given essential differences
between 2D gestures on a touchscreen and 3D free-form
gestures in the air, those studies on 2D gestures may not be
directly applied to 3D motion gestures performed with smart
wearable devices.

Besides 3D motion gestures, other types of behavioral
biometrics, e.g., arm movement [16], head movement [17], and
touch [18], have been proposed for authentication on smart
wearable devices such as smartwatch and Google Glass. In
addition, handwaving actions with a smartphone in hand have
also been studied for unlocking smartphones [19].

There exist a few studies on the usability and security of
behavioral biometric authentication. Li et al. [20] compared
the usability and security of PIN and pattern based behavioral
authentication on smartphones and tablets and showed that
the two schemes can achieve the same level of accuracy.
Li et al. [21] also proposed that focusing on users’ unique
segments of their gesture performance can improve security
and usability of behavioral biometric authentication. Khan et
al. [22] studied the usability and security perceptions of human
behavior based implicit authentication, which helps understand
the barriers to the adoption of implicit authentication. Khan et
al. [23] evaluated the effectiveness of targeted mimicry attacks
on three touch input based implicit continuous authentication
schemes and their results show that those schemes failed
against shoulder surfing and offline training attacks. Our study
uses different types of attacks including targeted mimicry
attacks to understand the security of 3D motion gestures and
our results show that gesture based behavioral biometrics can
be highly resistant to targeted mimicry attacks.

III. REALTIME MOTION BASED AUTHENTICATION

To gain a better understanding of the characteristics of the
gestures that are secure and usable for authentication and the
important factors that affect gesture authentication, we devel-
oped REMOTE, a successor of MotionAuth [2], our prior work
that uses simple 3D motion gestures for user authentication on
wrist-worn smart devices. Compared to MotionAuth whose
primary functionality is data collection for offline analysis,
REMOTE was developed for online mobile authentication
with features for practical personal use such as profiling (i.e.,
training and template generation) with only genuine samples
and user-based threshold setting in profiling.

A. System Overview

REMOTE uses two motion sensors universally built in smart
wearable devices, i.e., accelerometer and gyroscope, to collect
motion data for authentication. More sensory data can be
incorporated into REMOTE when those sensors become com-
monly available. REMOTE consists of two phases: enrollment
and verification. In enrollment, a user first creates a free-form
3D gesture using the arm wearing the device (e.g., smartwatch
or wristband) and then performs the gesture multiple times to
register it. The REMOTE system processes the data from gen-
uine gestures and generates the verification templates for the
user. In verification, a user is asked to perform the gesture for
the claimed identity. REMOTE compares the gesture data with
the templates associated with the claimed identity. A decision
is made in real time to show whether the identity is verified.
In the current design, only timestamp, 3D accelerometer data
(ax, ay , az) and gyroscope data (gx, gy , gz) are collected and
used in both enrollment and verification phases.

To measure the similarity between two samples (e.g., two
training samples, or one training sample and one testing sam-
ple), dynamic time warping (DTW), a time series alignment
algorithm, is employed. DTW is a popular method used in
gesture authentication [24], [25], [2], [26]. In this study, DTW
is applied to measure the similarity between two time series
each consisting of a sequence of time points with 6 dimensions
(ax, ay , az , gx, gy , gz). The output of DTW is a distance-like
value and it is compared to a predefined threshold to determine
whether a gesture attempt is accepted. If the DTW distance
is smaller than the given threshold, the gesture is deemed
genuine.

B. Template Generation

To represent a user’s motion gestures, a given number of
the user’s training samples (five in the current implementation)
are selected as the user’s templates. Using multiple templates
instead of one is to better characterize the gesture behavior of
a user.

In order to create a user’s template set, we perform pairwise
comparisons on the set of the user’s training samples to find
those samples with relatively small similarity distances. For a
training sample set S = {s1, · · · , sn}, the similarity distance
for sample si (1 ≤ i ≤ n), denoted as D(si), is defined as the
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Fig. 2: Experiment process with sitting and standing postures

average of the DTW distances between si and the rest training
samples, i.e.,

D(si) =
1

n− 1

∑
j

d(si, sj), j 6= i, j = 1, · · · , n,

where d(si, sj) is the function that calculates the DTW dis-
tance between samples si and sj . Those samples that have the
five smallest similarity distances are selected as the templates.

C. Threshold Determination

Decision of the threshold can affect authentication accuracy.
For REMOTE, a larger threshold can decrease the false rejec-
tion rate (accommodate large variations of genuine gestures)
but at the same time increase the false acceptance rate, while a
smaller threshold can render a lower false acceptance rate but
a higher false rejection rate. Since users have their unique way
of performing their gestures and each user’s gestures can vary,
we apply a user-based threshold θ for each user in REMOTE.
Let the mean and standard deviation of the similarity distances
for all training samples be µ and σ respectively. We define
θ = µ + 2σ based on a number of experiments. Assuming
similarity distances follow a normal distribution, 95.5% of
possible distances would fall into the range of θ [27].

D. Classification

Once the templates and threshold are generated for the
gesture created by a user, the user can conduct self-tests and
receive instant feedback on whether a test attempt is accepted.
A majority voting method is applied in decision making.
Specifically, a gesture attempt is compared against the five
templates for the claimed identity, which generates five DTW
distances. A decision is made based on the majority voting.
Acceptance is granted if at least three out of the five DTW
distances are smaller than the threshold set for the gesture.

IV. EXPERIMENT DESIGN

A. Experiment Overview

To understand user-created gestures in real world, each
experiment participant is asked to create a personalized 3D
motion gesture before the experiment. Participants are sug-
gested creating gestures that are easy to perform and recall
but difficult to mimic. In the experiment, each participant is
given a smartwatch and can choose to wear it on either left or
right wrist to perform gestures. Gesture authentication result
is shown on the smartwatch instantly.

To study what gestures are secure (or insecure) for authen-
tication, we design the following three types of attacks that
cover different levels of sophistication in the experiment.

• Random Attack: Attackers have no prior knowledge
about the victim’s gesture. The attacks are based on
random guessing, which is similar to brute force password
attack. This type of attacks represents most common
attacks that can occur when a lost or stolen device is
in the hand of a third party.

• Content-Aware Attack: In such an attack, an adversary
has the descriptive information about the victim’s ges-
ture, e.g., the gesture shape and duration, which can be
obtained via social engineering or a third party. This type
of attacks represents an escalated level of threat where the
victim is targeted and the adversary has already collected
certain information about the victim indirectly.

• Mimicry Attack: In such an attack, an attacker is able
to clearly observe the legitimate user’s gesture directly
or through a recorded video. The attacker is also able
to mimic the gesture skillfully before launching attacks.
This type of attacks represents the highest level of threat.
The adversary is highly motivated to mimic the legitimate
user’s gesture and has the highest chance to pass the
authentication.

In our experiment, each participant is required to complete
a sequence of tasks including training and self-tests in addition
to the aforementioned three types of attacks. Multiple self-test
tasks are created to examine gestures’ usability over time.

In each task, participants are asked to perform their gestures
in two postures: sitting and standing. Participants choose their
starting posture at their will in the experiment. To minimize the
impact on authentication result introduced by the difference of
devices or sensors, all the motion gestures performed in the
same posture are collected using the same smartwatch. We
use two smartwatches of the same model, one for gestures in
the standing posture and the other for the sitting posture. We
assess self-tests and attacks against the templates generated
from training samples in the same posture. In other words,
no templates generated in standing are used to assess the
self-tests and attacks performed in sitting, or vice versa. The
purpose of this design is to achieve a good understanding of
motion gestures in a specific posture. Scenarios of combining
different postures in gesture authentication, which is much
more complex, are left for future study.
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(a) (b) (c)

Fig. 3: Screenshots of the REMOTE mobile app

B. Experiment Process

Before the experiment for a participant starts, the study is
explained in detail to the participant and does not proceed
without the participant’s full consent. Each participant is
assigned a unique ID for anonymous data collection and
anonymous target selection in attack activities. Participants
have no prior knowledge of their attacking targets, which
ensures the fairness of random and content-aware attacks.

In the experiment, participants are required to complete a
series of tasks with one or two tasks a day and all tasks are
completed in four different days (i.e., four visits). Each visit
is designed to last about 20 to 40 minutes. The experiment
process is illustrated in Figure 2, where we arrange a gesture
training task in the first visit, a self-test task (marked as Testing
1) and two attack tasks (random (R) attack task and content-
aware (CA) attack task) in the second visit, a self-test task
(Testing 2) and a mimicry attack task (M Attack 1) in the
third visit, and a self-test task (Testing 3) and another mimicry
attack task (M Attack 2) in the last visit. The time interval
between two contiguous visits is set to at least two days so that
we can measure what gestures can provide good usability over
time. The setting of two mimicry attacks is to assess whether
there exists an evident increase in attack success rate with
more practices on mimicking the victim’s motion gestures.

In gesture training sessions, two cameras are set up on site
to record users’ motion gestures from two directions (one
facing the user’s front and the other facing the user’s left side),
respectively. This setting aims to record sufficient movement
information for attackers to practice for mimicry attacks by
watching the recorded videos. In the training session, each
participant is asked to repeat his or her motion gestures 30
times in both sitting and standing postures. Hence, 60 gestures
in total are collected for each participant in that session.

In each of the three self-test sessions, participants need to
test their gestures at least 30 times in each posture. In the
current setting of the REMOTE app, a user has three chances
for each test attempt. Either a success or three failures will
end a test attempt. This setting imitates the real-world setting
where users are always given several chances during a login.

For attack sessions, a participant is required to attack the
same set of targets, who are randomly selected and vary
for different attackers, in his or her attack sessions. This
design aims to measure the change of attack performance with
increasing familiarity with a target’s gestures. In each attack
session, a participant is asked to launch 15 attacks against each

(a) (b) (c)

Fig. 4: Screenshots of attack tests

of the three randomly selected targets. Attacks are performed
in both sitting and standing postures. Therefore, the total
number of attacks a participant generates are 90 (15× 3× 2)
in each attack session.

C. Prototype Application for Experiment

We developed a REMOTE mobile app for Android smart-
watches. The app has a simple user interface (UI). Screenshots
of the app’s UI are shown in Fig. 3. Each user is uniquely
identified through a preassigned ID number. To start the
enrollment (i.e., training), a user has to select his or her
assigned ID number and press “Training” button (3 (a)). The
user can choose to save or discard each performed gesture in
the training session (3 (b)) to control the quality of training
samples. After the user performs the personal gesture for a
given number of times, the gesture profile will be generated
and saved along with the user’s ID number (3 (c)).

The app is also used for testing random, content-aware,
and mimicry attacks. For attack purpose, the user ID being
chosen in an attack session has to be the target victim’s ID.
Fig. 4 shows some screenshots during attack. In an attack
session, a toast message is displayed at the bottom of the
screen to show the verification result after each attack. Fig.
4 (b) shows the screenshot of a failed attack while Fig. 4 (c)
shows the screenshot of a successful attack. Through instant
feedback, the prototype app can give users the sense of real-
world authentication.

V. EVALUATION

In this section, we present the data acquisition and collected
gestures in our experiment, the experimental results, and the
analysis and discussion about the results.

A. Data Acquisition

We installed the REMOTE app on two Samsung Galaxy
Gear smartwatches and used them for evaluation. Each gesture
sample is represented by a time series with seven attributes.
The first attribute is the timestamp (t), the second to fourth
attributes are the acceleration in 3D (ax, ay , az), and the last
three are the angular acceleration of gyroscope in 3D (gx, gy ,
gz). The length of a sample varies as it is up to how a user
performs a gesture. The sensing frequency was set to 100 Hz
(i.e., 100 time series data points per second).

We recruited student volunteers for evaluation through our
institutional mail-lists. Each participant would receive $25 as
compensation after successfully completing all the required
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Fig. 5: Gestures of participants (not including U7) in 2D

tasks. Fig. 1 shows a participant who is performing a gesture
with his left arm in sitting. We recruited 11 participants but
two of them were excluded from the study as they did not
complete. Therefore, our evaluation is based on the data from
the left 9 participants. Two of them were college students
and the rest were graduate students. Their ages were between
23 and 44 with a mean of 30.3 and a median of 29. Six
participants were male and three were female. The entire data
collection was carried out in Spring 2017 and spanned over
a month. The participants were excited about the experiment
especially the attack activities. They were highly motivated to
try and see whether they can break the gestures set by others.

B. User-created Gestures

Each participant created a personal 3D motion gesture
involving hand and arm movement. Those gestures (except
U7’s) are depicted in a 2D form in Fig. 5, which illustrates
the composition of those gestures. The brief description of
each gesture is given in Table I. Clearly, those user-created
gestures vary significantly from simple ones such as forearm
movement (U4) to complex ones such as drawing “Sun” and
“love” in the air (U5 and U8). Since U7’s gesture is patting on
head, chest and thigh once, which is difficult to illustrate in 2D,
it is not included in Fig. 5. The nine gestures can be roughly
grouped into three categories: I) simple hand/arm movement
(U2, U4, U7), II) drawing a geometric shape (U3, U9), and III)
drawing one or multiple characters (U1, U6, U5, U8).

C. Experimental Results

1) Self-test Results: The self-test results for the 9 par-
ticipants are listed in Table II. The numeric values not in
percentage format refer to the number of acceptance out of
30 attempts in a self-test session in a specific posture. A
successful attempt (i.e., acceptance) means that the partici-
pant passes verification within three chances given for each
attempt. “S” and “St” in Table II refer to sitting posture and
standing posture respectively. From the table, the majority
of participants (5 out of 9) have at least 90% success rate
(in either sitting or standing) in all three self-test sessions.
As a self-test session and its prior session (either a training

TABLE I: Description of user-created gestures
Uid Wrist in Use Gesture Brief Description

U1 Right Draw capitalized ‘H’ in the air

U2 Right Raise up arm like Superman

U3 Right Draw a star in the air

U4 Left Move forearm up from horizontal to vertical

U5 Right Sign with word ‘Sun’ (S capitalized)

U6 Right Draw capitalized ‘Y’ in the air

U7 Left Pat on head, chest and thigh

U8 Left Draw ‘love’ cursively in the air

U9 Left Calibration ∞ three times and fist bang

or self-test session) are at least two days apart, those self-
test results are encouraging for practical use of 3D motion
gestures. Interestingly, the five participants with high success
rates belong to categories I (simple hand/arm movement) and
II (drawing a geometric shape). In particular, participants U2,
U4, U7 and U9 achieved 100% success rate for all three self-
tests in a specific posture. More detailed analysis of those rates
is given in the subsequent sections.

2) Attack Results: The results of all the attacks are listed
in Table III. The superscript of a user ID refers to the number
of the attacks that user received in a given posture (sitting or
standing) in one attack session (Random, CA, M-1, or M-2).
For example, U60

3 means user U3 received 60 attacks (from
4 attackers each contributing 15 attacks) in an attack session
that were launched in a particular posture. The numeric values
not in percentage format refer to the numbers of successful
attacks (i.e., false acceptances) in an attack session. The
percentage values refer to the false acceptance rates. In “Total”
row, the lower a value for a participant, the more secure
that participant’s gesture is. Clearly, the gestures of U1, U2,
U3, U5, U8 and U9 are highly resistant to various types of
attacks including targeted mimicry attacks. Almost all their
false acceptance rates are 0. The two gestures (U4’s and U7’s)
with high false acceptance rates (mainly for mimicry attack
sessions) are in category I, indicating that simple hand/arm
movement gestures are vulnerable to mimicry attacks. Further
analysis is detailed in the next section.

D. Usability and Security Analysis

In this study, we use usability and security as two qualitative
concepts to characterize the applicability of a user-created
gesture and its resistance to attacks respectively. We measure
a gesture’s usability and security mainly through its false
rejection rate and false acceptance rate, respectively.

1) Usability of Gestures: From Table II, it can be seen
that the gestures in categories I and II have much higher true
acceptance rates (i.e., much lower false rejection rates) than
those in category III. Compared to drawing one or multiple
characters, making simple hand/arm movement and drawing
a shape (even a bit complex one like calibration gesture) are
relatively easy to perform and repeat reliably.

For gestures that draw a character (U1’s ‘H’ and U6’s ‘Y’),
low false rejection rates were anticipated as those gestures are
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TABLE II: Self-test results (# of attempts that passed (out of
30), S for sitting and St for standing)

Self-test U1 U2 U3 U4 U5 U6 U7 U8 U9 %

Testing 1
S 25 27 30 30 26 29 28 10 29 87%
St 29 30 30 29 27 28 30 27 30 96%

Testing 2
S 30 20 27 30 28 10 30 0 29 76%
St 30 30 28 30 16 30 30 21 30 91%

Testing 3
S 13 30 26 30 30 4 30 0 30 71%
St 5 30 30 29 10 25 30 16 30 76%

Total (%)
S 76% 86% 92% 100% 93% 48% 98% 11% 98% 78%
St 71% 100% 98% 98% 59% 92% 100% 71% 100% 88%

still relatively simple. However, the participants delivered quite
different results. U6 had very poor performance in sitting in
the second and third sessions. Based on our observation, U6

had a minor action when performing the gesture in sitting
in the training session, while that action was barely seen
in the second and third testing sessions. U1’s passing rate
drops dramatically in the third testing session for both sitting
and standing postures, which is in sharp contrast to the first
two sessions. A possible reason for that change is given in
Section V-E. One observation on the two characters is that
their gestures involve multiple strokes in the performance. An
intuitive explanation for their high false rejection rates is that
multi-stroke gestures (e.g., U1’s ‘H’) in general are more likely
to vary in the air and thus more difficult to reliably repeat than
single stroke gestures (e.g., U3’s star).

For gestures that draw multiple characters (“Sun” and
“love”), the results suggest poor usability. Those gestures often
contain multiple strokes, complex curves, and considerable
acceleration changes, which makes it difficult to re-draw them
in the air in the same manner. As a special case, signatures are
often considered in creating such gestures. Our results indicate
more comprehensive studies on the usability of signature-
based 3D motion gestures are certainly needed for smart
wearable devices.

2) Security of Gestures: From Table III, we can see that
random attacks in general are not effective to gesture-based
behavioral biometric authentication. More importantly, our
results show that the additional descriptive information given
in the content-aware attacks only helps attackers gain very
limited advantage over random attacks. As our motion gesture
authentication is based on behavioral biometrics, descriptive
information offers little help to perform the gesture in the same
manner as the gesture creator does. Mimicry attacks are more
effective than random and content-aware attacks although they
achieve no success in most cases. For the results of mimicry
attacks (M-1 and M-2 in the table), the overall success rates
in sitting and standing in the second session (M-2) are both
higher than those in the first session (M-1), indicating that
more practices can help increase success chance for mimicry
attacks.

There exist some users (e.g., U4 and U7) whose gestures in
the sitting posture were successfully mimicked. Those gestures
are relatively simple (in gesture category I). No turning points

TABLE III: Attack results (superscript is # of attacks)

Attack U75
1 U45

2 U60
3 U45

4 U45
5 U60

6 U45
7 U15

8 U15
9 %405

Rand
S 0 0 0 0 0 0 0 0 0 0%

St 0 0 0 0 0 0 0 0 0 0%

CA
S 0 0 0 0 0 0 11 0 0 2.7%

St 0 0 0 0 0 0 0 0 0 0%

M-1
S 0 0 0 28 0 0 15 0 0 10.6%

St 0 0 0 0 0 1 0 0 0 0.2%

M-2
S 0 0 0 41 0 11 7 0 0 14.6%

St 0 2 0 1 0 2 1 0 0 1.5%

Total S 0% 0% 0% 38.3%0% 4.6% 18.3%0% 0% 7.0%

(%) St 0% 1.1% 0% 0.6% 0% 1.2% 0.6% 0% 0% 0.4%

or changes in action strength/speed, which are important in
differentiating genuine gestures from mimicry ones, can be
observed from those gestures. However, it is interesting that
the same gestures in the standing posture are much more
resistant to mimicry attacks, which suggests that posture may
need to be considered in creating secure gestures.
U7’s gesture (pat on head, chest and thigh) is the only

one that was successfully attacked in content-aware attacks.
Interestingly, only one participant (out of three) was able to
successfully mimic it in mimicry attacks. By examining U7’s
gesture, we find that it is actually not easy for other people to
have the same or similar arm movement distance in performing
that gesture as U7 does, due to the physical difference between
individuals. The only participant who had successful attacks
is very similar to U7 in height and arm length. Therefore,
physical body features such as body shape and size should
also be considered and exploited in creating secure gestures,
in addition to personalized variation in action strength and
rhythm.

Many participants were surprised by the fact that the vast
majority of their mimicry attacks failed. To help understand
why most mimicry attacks fail, we pick a sample from U3’s
training data and compare it with a mimicry attack sample
against U3 in 3D acceleration (ax, ay , az) and angular
acceleration (gx, gy , gz). The comparison result is illustrated
in Fig. 6. From the figure, although the time series of ax, az ,
and gy signals for the mimicry attack sample (curves in red)
are similar to those for the genuine sample (curves in blue),
evident differences between the attack sample and the genuine
sample manifest in the time series of ay , gx, and gz signals
and those differences enable the system to reject the attack
sample. To differentiate, the border lines for ax, az , and gy
figures are in light green while those for ay , gx, and gz figures
are in bold red.

In fact, the mimicry attack sample used in the comparison
is a special case, which is quite close to being successfully
authenticated. In our experiment, most mimicry attack samples
have more or less obvious differences with genuine samples.
Duration difference (e.g., mimicry gestures finish half second
earlier or later) is a common factor that defeat mimicry attacks.
Action strength and rhythm are also difficult to mimic, even if
the gesture trajectory can be well imitated. By examining raw

18



0.5 1 1.5 2 2.5 3 3.5 4

−0.5

0

0.5

1

Time (sec)

A
m

pl
itu

de

G Sample
M Attack

0.5 1 1.5 2 2.5 3 3.5 4

−1

−0.5

0

0.5

1

Time (sec)

A
m

pl
itu

de

G Sample
M Attack

0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

Time (sec)

A
m

pl
itu

de

G Sample
M Attack

(a) ax signal (b) ay signal (c) az signal

0.5 1 1.5 2 2.5 3 3.5 4

−2

0

2

Time (sec)

A
m

pl
itu

de

G Sample
M Attack

0.5 1 1.5 2 2.5 3 3.5 4

−6

−4

−2

0

2

4

6

Time (sec)

A
m

pl
itu

de

G Sample
M Attack

0.5 1 1.5 2 2.5 3 3.5 4

−4

−2

0

2

Time (sec)

A
m

pl
itu

de

G Sample
M Attack

(d) gx signal (e) gy signal (f) gz signal

Fig. 6: Comparison between a genuine sample and a mimic attack sample using accelerometer and gyroscope data

Fig. 7: Gestures’ security and usability

sensor data, we find that a mimicry attack sample is rarely
able to match a genuine sample in all aspects.

3) Combination of Security and Usability: To gain a com-
prehensive understanding of user-created gestures’ security
and usability, we assign two numeric scores to each partic-
ipant’s gesture–one for usability and the other for security–
based on the gesture’s self-test and attack results, and we
place the nine gestures on a 2D coordinate system (x−axis
for security and y−axis for usability) using gestures’ scores
as their coordinates, which is illustrated in Fig. 7. Given the
emphasis on understanding gestures’ security and usability via
visualization, the scoring detail is omitted.

Interestingly, the 9 gestures exhibit 3 clusters based on
their relative locations in Fig. 7. The gestures created by U4

and U7, i.e., in gesture category I, are in “usable but less
secure” cluster in that they are simple and easy to perform
but meanwhile are also easy to imitate. The gestures that draw
one or multiple characters (gesture category III) are in “secure
but less usable” cluster since those gestures are difficult to
repeat in the same manner. The gestures by U2, U3, and U9,
which are the mix of categories I and II, are “secure and
usable.” The correlation between gesture categories and their
security and usability characteristics suggests the following
features for a secure and usable gesture: 1) single stroke with
sufficient variation in movement, 2) smooth and natural change
of moving direction and speed, and 3) consistent performance
under various circumstances.

E. Discussion

1) Effect of Posture: According to Table II, for self-tests,
the average success rates (last column in the table) of gestures
in standing are consistent higher than those in sitting. The
overall success rate of gestures in standing is 10% higher
than that in sitting. This difference is reflected in most of the
individuals’ self-test results. Interestingly, from Table III, the
attack success rates for the gestures in standing are consistently
lower than those in sitting. Although in our study gestures
in standing generally show an edge over those in sitting, the
conclusive impact of posture on gesture’s usability and security
remains unclear and demands further comprehensive studies.

Three gestures (U5, U6, U8) exhibit outstanding disparities
between sitting and standing. U5’s gesture is an exception in
that its two self-test results in sitting are much better than
those in standing. Part of its possible reason is given in the
next discussion section. U8’s gesture is drawing word “love,”
which requires more horizontal space. Performing this gesture
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in sitting is more constrained in movement range and speed
due to limited space and thus less stable compared to its
performance in standing, which may explain in part why U8’s
gesture has the worst performance in sitting. U6’s gesture also
exhibits similar disparities as U8’s. The talk with U6 reveals
that the participant felt more natural and comfortable to draw
‘Y’ in standing than in sitting.

2) Psychological Factor: In Table II, the passing rate for
some users (e.g., U1 and U5) drops substantially in certain
tests. Through our observation and talks with the participants,
we believe that performance of a gesture may also be affected
by the performer’s psychological state. U1 had a dramatic drop
in the third self-test session (from 100% passing rate in the
second session to 30% in the third session). Coincidentally,
U1 had a doctor’s visit right before the test, which might
have a negative psychological and/or physiological effect on
gesture performance. For U5, we observed that she took a
phone call in the middle of her third self-test session in the
standing posture and that she failed for all the following
attempts after the call. This dramatic change of behavior might
be attributed to her psychological change caused by the call.
This study demonstrates that systematic and in-depth research
is needed to understand and evaluate psychological factors to
gesture performance and their impact on behavioral biometric
authentication.

VI. CONCLUSION

In this paper we presented our empirical study on realtime
motion gesture based authentication for smart wearable de-
vices as a first step towards a comprehensive understanding
of 3D free-form motion gestures for behavioral biometric
authentication. We designed a realtime motion gesture authen-
tication scheme named REMOTE and developed a REMOTE
mobile app for Android smartwatches. We conducted a multi-
stage experiment, which consists of a series of self-tests and
attacks of different levels to understand gestures’ security and
usability in practice. Our experimental results and analysis
suggest the following features for a secure and usable gesture:
1) single stroke with sufficient variation in movement, 2)
smooth and natural change of moving direction and speed,
and 3) consistent performance under various circumstances.
Our results also suggest that posture and psychological state
may affect gesture performance. Our future work includes a
more comprehensive user study to gain a deeper understanding
of secure and usable gestures.
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