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Abstract—Graph theoretical analysis has been applied to
both structural and functional brain connectivity networks and
has helped researchers conceive the effects of neurological and
neuropsychiatric diseases including Alzhemier and Schizophre-
nia. However, existing graph theoretical approaches to brain
connectivity networks simply assume that temporal correlations
between brain regions are stable during the entire timeseries
under consideration, and only focus on high-level network topo-
logical characteristics such as degree distribution. To advance
the understanding of brain connectivity networks at a fine
granularity, we propose a new method that can help discover
connectivity-oriented insights from a time series of brain connec-
tivity networks. In particular, our method is capable of identifying
(1) strong correlations, which are represented as frequent edges
in brain connectivity networks, for each individual subject, and
(2) frequent substructures, which are connected components
appearing frequently in brain connectivity networks, for a group
of subjects. We apply the method to a data set of 38 subjects
that were involved in a study of early life stress on depression
development. Our findings have been echoed by the domain
experts in terms of their clinical implications.

Index Terms—brain connectivity, computational neuroscience,
graph theory, graph mining, frequent itemset mining

I. INTRODUCTION

Graph theoretical analyses of both structural and functional

human brain networks have been rapidly applied to the un-

derstanding of human brain network organizations [1] [2] [3].

Previous studies have found that both structural and functional

brain networks resemble features of complex networks such

as small-world topology [4] [5], scale-free degree distribution

[6], highly connected hubs with high degree or high centrality

[7], and modularity [8] [9]. However, most of the previous

studies mainly focus on understanding human brain networks

through measuring network characteristics on a small scale.

Investigation of the correlation between a subject’s brain

connectome and her clinical conditions still remains largely

untouched.

Network characteristics such as mean clustering coefficient,

path length, degree distributions, and robustness have been

used to capture the differences between diseased subjects and

healthy control subjects in Alzheimer [10] and Schizophrenia

[11]. However, to simplify analysis, existing graph theoretical

approaches (e.g., [12]) to brain connectivity networks do not

take the stability of correlations into consideration, assuming

that the temporal correlations between brain regions are sta-

ble across the entire timeseries. Moreover, these approaches

are not able to discover fine-grained knowledge that exists

at correlation level instead of network level. For example,

strong correlations in neural network operations, which are of

high interest for neuroscientists, cannot be identified by using

existing approaches.

In this paper, we propose a new brain network analysis

method that can help discover connectivity-oriented insights

from a time series of brain connectivity networks. Our method

focuses on identifying strong edges (i.e., correlations) that

repeatedly appear in brain networks of a subject over time

and frequent substructures that are commonly shared by a

group of subjects with the same clinical conditions, aiming

to provide a microscopic view of important areas in brain

networks. Specifically, we use frequent edgesets mining to

find frequent substructures. We apply the method to a real-

life data set to study the effects of early life stress (ELS)

on depression development. Our initial results have triggered

great interests from clinical psychiatrists as they find that

the frequent substructures derived from the data set exhibit

functional modules of brain networks, shedding light on their

understandings of brain networks.

ELS includes a wide range of stressors occurring before

sexual maturation such as physical and sexual abuse, neglect,

and malnourishment. ELS can have profound long-term effects

on the development of the central nervous system and its

regulation of basic psychology function. ELS can lead to

later cognitive impairment. And, ELS is widely documented to

increase risk for depression [13]. The neurobiological conse-

quences of stress exposure also involves dysfunction of neural

networks mediating cognitive and affective processes [14].

Stresses during infancy may result in deficits in communication

between brain cells, memory loss and impaired cognitive

abilities that manifest later in life, such as the development of

depression [15]. Both ELS and depression might be conceived

as a disorder of connectivity between components of brain

networks. Presumably, ELS has a high risk of developing

depression in later life, and functional brain connectivity

network should show some distinct topological characteristics

associated with ELS. However, under certain circumstances, a

subject can be resilient to the impact of ELS on depression de-
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velopment. Even though, a depression resilient subject’s brain

connectome might show noticeable feature differences from

depressed subjects or healthy subjects. In this work, we tested

this hypothesis by constructing and comparing functional brain

network topologies among different subject groups derived

from resting-state functional MRI (fMRI) timeseries.

The rest of the paper is organized into four sections. In the

next section, we discuss the background of the study: a) func-

tional and structural brain connectivity and graph theoretical

analysis; b) frequent itemset mining and graph minging. In

section III, we present our methods from converting subjects’

fMRI images to functional brain connectivity graphs, to min-

ing for common substructures and inducing signature graphs.

Results and their clinical implications are discussed in section

IV. Finally, we conclude with the importance of devloping a

such general framework for brain connectivity analysis and its

potential impacts in the future.

II. RELATED WORK

A. Brain connectivity and graph theory

There are two types of brain connectivity networks: struc-

tural network and functional network [16] [1] [5]. Structural

networks represent anatomical and physiological associations

among different brain elements. This can be achieved by

examining the white matter connections among gray matter

regions from diffusion tensor image (DTI) data. Functional

connectivity indicates the statistical functional association or

dependency among individual neurons or brain regions. Func-

tional brain networks can be obtained through measuring

temporal correlations between spatially remote neural events

based on functional magnetic resonance imaging (fMRI), elec-

troencephalography (EEG), magnetoencephalography (MEG),

or multielectrode array (MEG) data.

In this paper, we focus on functional brain connectivity

networks obtained from fMRI data. fMRI has been widely

used to detect the changes of regional brain activity through

their effects on blood flow and blood oxygen consumptions.

As a neuronal activity requires glucose and oxygen from the

blood stream, it will result in a noticeable change of the local

ratio of oxygenation and generate the markers of blood oxy-

gen level-dependent (BOLD) signals for fMRI. The temporal

correlations between defined regions of interest (ROIs) can

then be calculated by measuring the linear dependence of

the signal strengths between two ROIs. In this study, we use

the Pearson product-moment correlation coefficient (PMCC) to

measure the strength of connection between two ROIs. Other

correlation measurement approaches including lag correlation,

mutual information, and peak correlation can also be used

to measure the dependency between two variables from time

series [17].

Using the matrix of correlation coefficients, an undirected

graph G = (V,E) of degree n = |G| (i.e. number of

vertices/nodes), can be defined to represent the functional

brain connectivity network, where a node/vertex of the graph

represents a ROI or a neuron and an edge represents a

connection/correlation between two nodes and thus indicates

the functional connectivity. Such an abstraction eases the

application of Graph theory in quantitative investigation of the

topological organization of brain networks. Recent studies have

found that both structural and functional brain connectivity

networks exhibit properties similar to other complex networks.

For example, the small-world phenomenon (i.e. nodes are

locally clustered and large networks can be traversed, on

average, in a small number of steps) exists in both human

brain networks [18] and social networks [19]. For a brain

network, a number of network metrics can be measured to

analyze its network properties including 1) node degree, degree

distribution and assortativity; 2) clustering coefficient and

motifs; 3) path length and efficiency; 4) connection density

or cost; 5) hubs centrality and robustness; and 6) modularity.

Such analyses not only advance our understanding of human

brain organizations, but also promote the study of comparing

brain networks between diseased patients and healthy subjects

to provide more accurate clinical decision support [10] [11].

B. Frequent itemset mining and graph mining

Mining frequent items to find association rules has been

extensively studied since the work by Agrawal et al. [20].

Association rules can be used to discover the shopping patterns

from massive amounts of sales data, which can then be

used as the basis of decision making in various activities

such as advertising, product placement, etc. An association

rule, such as {onion, hamburger,meat} → {potato, chip}
demonstrates the customer buying behavior. Frequent sets of

products in sales transaction data describe how often items are

purchased together.

Formally, let I = {i1, i2, ..., im} be a set of items. Let D
be a collection of transactions, where each transaction T =
(tid, Itid) has a transaction id tid and a set of items Itid ⊆ I .

The support of a set (X) in D is the number of transactions

that contains item set X . A set X is called frequent if its

support is no less than a given minimal support (minsup). The

relative minimal support rminsup is defined as

rminsup = minsup/|D|,

indicating the probability of set X occurring in all D. The

problem of frequent itemset mining is to find all X in

F (D,minsup) = {X ⊆ I|support(X,D) > minsup}.

To go one step further, we can then look for association rules.

An association rule is an implication of X → Y , where

X ⊂ I, Y ⊂ I , and X ∩ Y = ∅. We say that an association

rule X → Y has confidence c, if c% of transactions in D
that contain X also contain Y . For the purpose of this study,

we only mine frequent itemsets.

The search space of frequent itemset mining on a set of

unique items I contains exactly 2|I| different sets. If I is

large enough, it is computationally hard to find the supports

of all sets over a database D. Therefore, we often just look

for closed itemsets and maximal itemsets. A frequent itemset

is called closed if no superset has the same support. And a
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frequent itemset is called maximal if no superset is frequent

(i.e., exceeding the minimum support).

In graph theoretical analysis, we are often interested in

finding frequent subgraphs. For example, in [21], biologists are

interested in identifying functional modules and evolutionarily

conserved subnetworks from biological networks. Frequent

subgraph mining is similar to frequent itemset mining. Given

a graph dataset, D = {G0, G1, ..., Gn}, support(g) is the

number of graphs (in D) in which g is a subgraph. The problem

of frequent subgraph mining is to find any subgraph g that has

support(g) ≥ minsup. One of the key differences between

frequent subgraph mining and frequent itemset mining is to

identify isomorphism in graphs. However, in our study, we do

no consider isomorphic subgraphs, since each ROI is uniquely

labeled.

In recent years, solutions on frequent itemset mining (e.g.,

apriori [20], eclat [22], and fp-growth [23], etc.) and frequent

subgraph mining (e.g., AGM [24], FSG [25], and gSpan [26],

etc.) have been well explored.

III. METHODS

A. Subject grouping, fMRI data acquiring and data prepro-

cessing

In total 38 subjects have been scanned, and all the sub-

jects are female. Each individual’s ELS and depression were

characterized by structured interview for Clinical Disorders

(SCID) and Early Trauma Inventory (ETI) with trained clinical

staff. In addition, all participants completed the Childhood

Trauma Questionnaire (CTQ) and Hamilton Depression Scale

(Ham-D) to further characterize their ELS histories and current

major depressive disorders (MDD). Current or past diagnoses

of MDD were determined based on the SCID; ELS history

was determined by the ETI and CTQ. 38 subjects were split

into three subject groups: 1) a healthy control group (13

subjects), in which subjects had neither ELS nor observation of

depression; 2) a resilient group (9 subjects), in which subjects

had ELS but did not develop depression symptoms; and 3)

a ELS-depression group (16 subjects), in which subjects had

ELS and were diagnosed with depression.

Image acquisition was performed using a 3.0 T Siemens

Magnetom Trio modality with a Siemens transmit-receive head

coil. Anatomic images were acquired at 1 × 1 × 1 mm3

resolution with an MPRAGE sequence as 176 1 mm thick

slices with the following parameters: FOV 224 × 256 mm,

TR 2600 ms, TE 3.02 ms, FA 8o. Functional images were

acquired with a z-saga sequence 42 to minimize artifact in the

medial prefrontal and orbitofrontal cortex due to sinus cavities.

Z-saga images were acquired at 3.4× 3.4× 4 mm3 resolution

in 20 4 mm thick axial slices with the following parameters:

FOV 220 × 200 mm, TR 2020 ms, TE1/TE2 30/66 ms,

FA 90o. In each session, 210 planar images depicting BOLD

responses were acquired with a 2.02s TR, total duration

7.2 minutes. During the resting-state scan, participants were

instructed to lie passively in the scanner and to refrain from

thinking about anything specific.

Images first underwent slice timing and motion correction

(i.e., corrected for head movement by realignment and regres-

sion), and low frequency Fourier bandpass (0.009 − 0.08Hz)

filtering, then were spatially smoothed to a 6mm FWHM

Gaussian filter, and finally were normalized to the MNI 452

template brain. White and grey matter voxels were segmented

using FSL, and noise from white matter voxels was regressed

out of the time courses from gray matter voxels.

Certain neural regions are more important than others for

emotion processing and emotion regulation. Many studies in

neuroscience field have consistently reported such findings

among healthy individuals, individuals exposed to ELS, and

individuals with MDD [27] [28] [29]. Therefore, we selected

21 well-studied ROIs (see Table I), which have emotion

processing and emotion regulation impacts on both healthy and

depressed populations [27] [30] [31] [28], to form an emotion

regulation network.

TABLE I
SELECTED ROIS IN THE EMOTION REGULATION NETWORK.

Region of Interest Description

lHPC Left hippocampus
rHPC Right hippocampus

rAMY Right amygdala
lAMY left amygdala
rDFC Right dorsal lateral prefrontal cortex
lDFC Left dorsal lateral prefrontal cortex

rT Right thalamus
lT Left thalamus
lC Left caudate
rC Right caudate

sACC Subgenual anterior cingulate cortex
rACC Rostral anterior cingulate cortex
dACC Dorsal anterior cingulate cortex

mFC Medial prefrontal cortex
vmFC Ventral medial prefrontal cortex
lvFC Left ventral lateral prefrontal cortex
rvFC Right ventral lateral prefrontal cortex

raI Right anterior insula
laI Left anterior insula
rpI Right posterior insula
lpI Left posterior insula

Time courses were first extracted from 6mm sphere ROIs

centered at the coordinates of each node for each individual

and then averaged across voxels within an ROI, which results

in a 21×210 (ROI×TPs) matrix for each individual. In the

matrix, each column is an ROI, each row is a time point (TP),

and the value of each cell indicates the activity strength of a

specific ROI at a specific time point.

B. Constructing functional brain connectivity graphs

In this study, we use the Pearson product-moment corre-

lation coefficient (PMCC) of the time courses to measure the

linear dependency (correlation) between two ROIs. The PMCC

is calculated based on two variables’ covariance, defined as

ρX,Y = E[(X − E[X])(Y − E[X])]/σXσY (1)

where E stands for the mathematical expectation, and σX

and σY are the standard deviations of X and Y , respectively.

The product of PMMC yields a value between −1 and +1
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inclusive (i.e., −1 ≤ ρX,Y ≤ +1). A value of +1 indicates a

perfect positive linear correlation between X and Y while −1
indicates a perfect negative linear correlation. By calculating

the PMCC for every pair of ROIs based on the extracted brain

activity time courses, we generate a correlation matrix (21×21)

for the 21 ROIs. The matrix is symmetric and the values in

the main diagonal are not interested as those values indicate

the correlation of an ROI to itself.

lHPC

rHPC

rAMY

lAMY

rDFC

rT

lT

lC

rC

sACC

rACC

dACC

mFC

vmFC

rvFC

ral

lal

lDFC

rpllpl

lvFC

Fig. 1. A sample functional brain connectivity graph that depicts a subject’s
emotion regulation network.

We can then derive a binary adjacency matrices from the

correlation matrices. Two ROIs will be regarded as adjacent

to each other and connected via an edge in the connectivity

graph, if the two ROIs are highly correlated (either positive

or negative). For an adjacency matrix, the value of its entries

is either 1 or 0, where 1 indicates the existence of a connec-

tion/edge and 0 indicates nonexistence. Formally,

A(i, j) =

{

1 if |ρi,j | ≥ T

0 if |ρi,j | < T
, (2)

where A(i, j) stands for the value of entry [i, j] in an adjacency

matrix, ρi,j is the correlation value in the corresponding

correlation matrix, and T is the given threshold. From an

adjacency matrix we can easily construct an undirected graph

of brain connectivity network. Each node/vertex in the graph

represents an ROI and two ROIs are directly connected if their

entry value is 1 in the matrix.

The decision of the value of T is based on the density

of a graph. The graph density is defined as the number of

edges divided by the total number of possible edges. For an

undirected graph G = (V,E) of degree n = |G|,

density =
|E(G)|

n(n− 1)/2
. (3)

Aligned with previous research [11], the graph density is

set in the range [0.37, 0.50]. A graph tends to be fragmented

if density is smaller than 0.37, and it may not represent

a biological system if density is larger than 0.50. Clearly,

a lower T incurs more correlations and thus more edges,

resulting a higher density of the graph.

Figure 1 shows an example brain connectivity graph using

the selected 21 ROIs with density = 0.37.

C. Mining for strong-edges graphs

Visualizing brain networks through functional brain connec-

tivity graphs is very helpful for neuroscientists to understand

and analyze the effects of diseases [10] [11]. However, there

are two limitations in the existing approaches. First, generated

connectivity graphs usually are very complex, full of connec-

tions and hard to make comparisons for either between-group

subjects or in-group subjects (e.g., see Figure 2). Second, a

correlation is decided over the entire timeseries, which assumes

that temporal relations between brain regions are quite stable

over time. However, it is likely that the assumption is not true

[32].

To help better understand functional brain networks, we

propose a method that can generate strong-edges graphs from

basic functional brain connectivity graphs. The method consid-

ers the the frequency with which connections between brain

regions occur over time and regards the connections that occur

frequently as “strong” and important to the function of the

overall network. By considering only strong connections, the

method can effectively prune the network and reveal patterns

of communication across distributed brain regions that define

a functional neural network.

We define the strength of an edge (i.e., a correlation between

two ROIs), denoted by Sei,j (1 ≤ i ≤ |ROI|, 1 ≤ j ≤
|ROI|, andi 6= j), as the frequency of its appearance across

all the brain connectivity graphs generated from the scan and

use it to derive strong edges. The scan on each individual took

7.2 minutes and has 210 time points (TP). We divide the 210

TPs into 41 groups, where each group contains ten TPs. For

data smoothing purpose, two consecutive groups have five TPs

in common. That is,

TPG1 = [TP1, TP2, ..., TP10],

TPG2 = [TP6, TP7, ..., TP15],

...

TPG41 = [TP201, TP202, ..., TP210].

In general,

TPGm = [TP(m−1)×step+1, ..., TP(m−1)×step+n], (4)

where TPGm is the m-th group, TPi is the i-th TP, and

|TPG| is total number of groups. Apparently, |TPG| =
⌊(|TP | − n)/step⌋ + 1. In this study, we set step = 5 and

n = 10.

We create a correlation matrix and its connectivity graph

from each group TPGm. The strength of an edge ei,j for one
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(a) Subject 2031 from the control group

lHPC

rHPC

rAMY

lAMY

rDFC

lDFC

rT

lC

rC

rACC
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mFC

vmFC

rvFC

ral

lal

rpl

lpl

sACC

lvFC

lT

(b) Subject 2034 from the resilient group

lHPC

rHPC

rAMY

lAMY

rDFC

lDFC

rT

lC

rC

sACC

rACC

dACC

mFC

vmFC

lvFC

rvFC

ral

lal

lpl

lT

rpl

(c) Subject 2044 from the depressed group

Fig. 2. Functional brain connectivity graphs of three subjects, randomly picked from each clinical group.

subject is defined as

Sei,j = |ei,j |/|TPG|, (5)

where |ei,j | is the number of graphs that contain edge ei,j and

|TPG| is the total number of graphs (i.e., 41 in our study).

Strong edges are those edges whose strengths are no smaller

than the predefined minimal support Sminsup (Sminsup ∈
[0, 1]). Figure 3 shows a strong-edges graph for subject 2031,

where density = 0.42 and Sminsup = 52%. Compared to

the original connectivity graph of the same subject in Figure

2(a), the strong-edges graph focuses on edges more frequently

observed within operation of the network and therefore in-

creases interpretability by decreasing the total number of edges

considered. For example, we can immediately see a clustering

effect in Figure 3. Nodes lT, rT, vmFC, mFC, and raI form

one cluster, and nodes laI, dACC, rC, lHPC, rHPC, rpI, and

rDFC form the other cluster. The two clusters are connected

through raI and laI.

D. Frequent edgeset mining and mining for common substruc-

tures

We use frequent itemset mining technique to extract a set

of key substructures from the individuals’ brain connectivity

graphs of a subject group. In the context of frequent edgeset

mining, given a graph G = (V,E) of degree n, let D be a col-

lection of transactions, where each transaction T = (tid, Etid)
has a transaction id tid and a set of edges Etid ⊆ E. The

support of a set X ⊆ D, denoted by support(X,D), is the

number of the transactions that contain edgeset X . A set X is

called frequent if its support is no less than a given minimal

support (minsup). We define the relative minimal support

(rminsup) as rminsup = minsup/|D| and use it to indicate

the frequency of set X occurred in all transactions. We also

restrict the size of X to be larger than minsize. The problem

of frequent edgeset mining is to find all the subsets X with

large enough support and size, that is, to compute the set

{X ⊆ D|support(X,D) ≥ minsup, |X| > minsize}.

lAMY

lvFC

laI
dACC

raI

lpI

rvFClT

rDFC

lHPC

rC
rHPC

rpI

sACC

rAMY

lC

rTvmFC
rACC

mFC

lDFC

Fig. 3. A sample of a graph that contains only strong edges for subject 2031.

In our study, we define a transaction T as a set of unique

edges from each time point group graph of a subject. Aligned

with our previous settings (i.e. step = 5 and n = 10), 210 time

points are split into 41 groups. For each group, we can generate

a connectivity graph; and we consider each graph of the time

point group as a transaction. Using frequent edgeset mining,

we can extract frequent substructures (edgesets) of a subject

group. Figure 4 shows four different substructures extracted

from the healthy control group (i.e. 13 subjects, and 13×41 =
533 transactions) with the following setting density = 0.50,

rminsup = 15%, and minsize = 5.
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(c)
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rAMY

lAMY

rDFC

lDFCrT

lT

lC

rC

sACC

rACC

dACC

mFC

vmFC
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raI
lpI

rpI

laI

(d)

Fig. 4. Samples of frequent substructures extracted from the healthy control group.

IV. RESULTS AND DISCUSSION

The purpose of this study is to explore new approaches

to enriching the understanding of human brain networks and

discovering insights from them. Traditional graph theoretical

approaches (e.g., [12]) to analyzing fMRI data suffer from a)

assuming temporal stability across the entire timeseries and

b) neglecting to differentiate between commonly used edges

and infrequently used ones in neural network operation. In

contrast, our approaches focus on strong connections between

well-defined ROIs. The immediate result is that we are able

to generate strong-edges graphs for each subject and make

connectivity graphs much more straightforward, so that key

characteristics of a network can be easily observed. As shown

in Figure 3, it is clear that two clusters are formed, and

connected through nodes raI and laI. Regions within the raI

cluster are predominantly involved in executive function (mFC,

vmFC), attention (rACC) and integrating multimodal stimuli

(rT, lT). Conversely, regions in the laI cluster are commonly

associated with affect (lAMY, rAMY, sACC), memory (lHPC,

rHPC), interoceptive sensation (lpI, rpI), sensory and motor

gating (lC, rC) and error processing (dACC). Figure 3 thus

depicts a rough division of higher-order cognition from sensory

and internal monitoring processes, an interpretation aided by

the increased modularity of Figure 3 and not readily evident in

the network depicted in Figure 2(a). However, this observation

is difficult to draw from the original brain connectivity graph

for the same subject in Figure 2(a). Moreover, the strong-

edges graphs help infer the stability information of a subject’s

functional brain networks over time. In this study, 210 time

points are grouped into 41 groups and a connectivity graph

is generated for each group, which is equivalent to taking a

snapshot of the functional brain network of a subject at a given

frequency along the time course. The frequency with which an

edge appears across the snapshots implies the importance (i.e.,

strength) of the edge for the overall operation of the network.

We use the frequent edgeset mining techniques to discover

common patterns/substructures from brain connectivity graphs

of all the subjects within the same clinical group. As shown in

Figure 4, frequent substructures are extracted from the healthy

control group, with density = 0.50, rminsup = 15%, and

minsize = 5. Successful emotion regulation is a multidimen-

sional and temporally unfolding process. Neurally, emotion

regulation has been found to recruit a diverse array of neural

regions that mediate cognitive control, conflict monitoring,

memory, emotion and saliency processing, and interoceptive

awareness and integration. It is interesting to note that when

mining frequent substructures, the control group demonstrated

a common substructure consisting of the rostral ACC, subgen-

ual ACC, ventral medial PFC, and medial PFC, as these regions

have known direct anatomical pathways connecting them to

emotion generation regions (e.g., amygdala and hippocampus).

The finding that these regions form a common substructure

among healthy individuals suggests that these tightly linked

nodes act in concert to bias information processing in emotion

generation regions.

Moreover, some literatures suggested that the densities of

the brain connectivity networks varied among subjects, there-

fore, the brain network metrics should consider all reasonable

densities, from 0.37 to 0.50 (i.e. for example, take the mean

of network metrics produced at a range of densities from 0.37

to 0.50 in 0.01 increments) [11]. In our study, we choose to

use a higher density value (i.e. 0.50 at most). As mentioned

in Section III-B, the threshold T is determined by the target

density, a higher density value results in a lower T , and

consequently creates more edges in the graph. Also, we can

make the conclusion that if an edge exists in a graph generated

using a higher T value, the edge should still exist, if we

chose a lower T value (i.e. higher density) and use the same

correlation coefficient matrix. In summary, for the purpose of

mining for frequent edgesets, a high density value preserves

all the necessary edges, and prevents information loss.

Although the methods investigated were only tested on

functional brain connectivity networks, they should be also

applicable on structural networks, because of their similarities

in terms of network characteristics.

V. CONCLUSION

In this paper, we have proposed a new methodology in graph

theoretical analyses of brain connectivity networks. Different

from traditional approaches, our method does not assume
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temporal stability of the brain activities over the entire time-

series. To help deepen the understanding of brain connectivity

networks, our method focuses on identifying strong edges and

discovering common subgraph patterns that exist in subjects of

the same clinical conditions. By not assuming static functional

connectivity, our method allows improved identification of

brain states that differentiate clinical populations.

Following current study, we plan to develop a classification

system that can accurately identify potential diseased subjects

or neurological flaws on a subject. One possible direction is

to rank frequent substructures according to their neurological

effects on brain networks, and discard low-ranking patterns as

outliers.
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