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A Distributed Graph-Parallel Computing System
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with Lightweight Communication Overhead

Yue Zhao, Kenji Yoshigoe, Senior Member, IEEE, Jiang Bian, Member, IEEE,
Mengjun Xie, Member, IEEE, Zhe Xue, and Yong Feng

Abstract—In order to process complex and large-scale graph data numerous distributed graph-parallel computing platforms have
been proposed. However, excessive communications among computing nodes in these systems not only aggravate the network I/O
workload of the underlying computing hardware systems but may also cause a decrease in runtime performance and scalability. In this
paper, we propose and implement a system called Ligraph, which computes large-scale graph data in distributed mode with lightweight
communication overhead. Ligraph is similar to PowerGraph system with three new features: (1) a Gather partial sum difference based
computing model; (2) a corresponding lightweight Gather communication mechanism; (3) for PageRank-like algorithms Ligraph
additionally employs a lightweight synchronizing communication mechanism and an edge direction-aware graph partition strategy
proposed by our former work LightGraph, which is specially designed for PageRank-like algorithms. We have conducted extensive
experiments using real-world data sets, and our results verified the effectiveness of Ligraph on reducing the communication overhead
and improving the runtime performance and the scalability compared with PowerGraph and LightGraph. For example, compared with
PowerGraph under Random partition scenario Ligraph can not only reduce up to 35.2 percent of the communication overhead but also
cut up to 21.8 percent of the runtime for PageRank algorithm while processing Twitter data set. Our experiment results also
demonstrate that compared with several other representative existing systems Ligraph also outperforms them in graph computing rate.

Index Terms—Distributed graph-parallel computing, big data, communication overhead
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INTRODUCTION

BIG graph analysis and computing is an emerging
and significant topic in both industry and academic
research. The reason is that complex networks such as
social, biological and computer networks can be mathemati-
cally modeled as graphs. And these real-world networks
are often very large in size, consisting of millions or even
billions of vertices, and a much larger number of edges. Effi-
cient and fast processing of these large real-world networks
is a basic requirement of engineers and scientists. Thus,
more and more attention and effort have been attracted to
the work of designing effective and scalable computing sys-
tems to analyze and process the huge real-world graphs.
Numerous graph-parallel computing abstractions have
been proposed and applied in real-world applications. For
example the single machine graph-parallel computing
systems [1], [2], [3], [4], [5], [6], [7], [8], which process large-
scale graph under the shared-memory multiprocessor
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computing environment, and the distributed graph-parallel
computing systems [9], [10], [11], [12], [13], [14], [15], [16],
[17], which process large-scale graph in parallel using multi-
ple machines. Compared to single machine graph-process-
ing systems, distributed graph-parallel computing systems
have higher scalability and greater computational and stor-
age resources for handling larger networks. However, in
distributed graph-parallel computing systems the commu-
nications among subtasks allocated on different machines
constitute significant obstacle to achieve good parallel pro-
gram performance. The communication overhead burdens
the I/O system of the underlying cloud/cluster platform
and potentially impacts the graph computing efficiency and
the scalability of the computing system. Fig. 1 illustrates the
scalability of several representative existing distributed
graph-parallel computing systems while executing Pag-
eRank algorithm on Twitter data set [18] (the underlying
system environment see Section 6.1). As the figure shows all
the evaluated systems exhibit a poor speedup with the
number of machines used increasing.

PowerGraph is one of the most advanced and popular
representative of the distributed graph-parallel computing
systems. PowerGraph adopts the mechanism of vertex-pro-
gram and exposes substantially greater parallelism [16],
which can quickly partition a graph, especially a power-law
graph, and improve the graph computing rate significantly.
However, like other distributed graph-parallel computing
systems, the effectiveness of PowerGraph also suffers its
heavy communications overhead. In this paper, we propose
and implement a new distributed graph-parallel computing
system with lightweight communication overhead, Ligraph.
Like PowerGraph, Ligraph is applicable for common large-
scale graph-structured computation. Ligraph is similar to
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Fig. 1. The PageRank runtime speedup of existing systems while com-
puting the Twitter data set [18].

PowerGraph with the following new features, which are our
key contributions of this work:

a. A Gather partial sum difference based computing
model;

b. A corresponding lightweight Gather communication
mechanism;

c. For PageRank-like algorithms Ligraph additionally
employs a lightweight synchronizing communication
mechanism and an edge direction-aware graph parti-
tion strategy (EDAP), which optimally isolates the
outgoing edges from the incoming edges of a vertex.

The rest of the paper is organized as follows. Section 2

introduces the background of this work. The Gather partial
sum difference based computing model is detailed in
Section 3. Section 4 introduces the lightweight Gather com-
munication mechanism. We conducted the volume of com-
munications analysis in Section 5. The design and results of
the experiment are detailed in Section 6. Section 7 introdu-
ces the related work. Section 8 concludes this paper and
states the direction for future work.

2 BACKGROUND

In a graph-parallel abstraction, the data to process is pre-
sented as a sparse graph in memory, G = {V, E}, and the com-
putation is conducted by executing a vertex-program (@ in
parallel on each vertex, v € V. With the computing resource
turning to be more and more abundant and available people
resort to distributed platforms to conduct graph-parallel
computing. In the following part of this section we mainly
give a detailed introduction of two of them: PowerGraph
and LightGraph, which are most relevant to this work.
Pregel [10] is a bulk synchronous graph computing
abstraction. It uses message passing mode to transfer infor-
mation between super-steps. Pregel proposes a commuta-
tive associative message combiner to reduce the number
of messages. GraphLab [2], [15] is a framework, which
supports asynchronous parallel graph computations in
machine learning. It differs from Pregel in that it allows the
vertex programs to run asynchronously based on a sched-
uler. PowerGraph [16] is drawn from the distributed
GraphLab framework [15]. It introduces several significant

improvements to the distributed GraphLab framework.
First, PowerGraph proposes a GAS programming model, in
which a vertex program consists of three phases: Gather,
Apply and Scatter. By partitioning the original vertex pro-
gram into sub-phases and lifting these sub-phases into the
abstraction PowerGraph distributes the execution of a sin-
gle vertex-program over the entire system [16]. Second,
PowerGraph inherits and incorporates many significant
advantages of both Pregel [10] and GraphLab [2], [15]. For
example, from GraphLab PowerGraph inherits the shared-
memory and data-graph view of computation, which frees
users from architecting a communication protocol to share
information. Like distributed Graphlab, PowerGraph sup-
ports both bulk-synchronous and asynchronous computa-
tion model. And in order to reduce the communication
overhead in Gather phase PowerGraph borrows the commu-
tative associative message combiner from Pregel. At last,
PowerGraph employs the vertex-cut approach for graph par-
tition. Vertex-cut can quickly comminute a large power-law
graph by cutting a small fraction of very high-degree vertices.
Thus, it addresses the problem of partitioning the power-law
graphs [16]. The most important partition strategies used in
PowerGraph are Random and Oblivious [16]. Random strat-
egy employs a hash function to randomly distribute edges to
computing nodes. It is fully data-parallel during the parti-
tioning process and can achieve a near-perfect balance in
workload distribution on large graphs. However, the blind
vertex cutting always creates a large amount of vertex repli-
cas and results in heavy communication overhead for the
graph computing. On the other hand, the Oblivious strategy
uses a sequential greedy heuristic method to direct the place-
ment of the subsequent edges. The goal is to minimize the
conditional expected replication factor. As defined in [16],
the replication factor is the ratio of the number of overall ver-
tices in the distributed graph over that in the original input
graph. In a p-way vertex-cut placement scenario, assuming
each vertex (v) of the original input graph spans over A(v)
machines, the replication factor can be formally defined as:

1
ReplicationFactor = v E |[A(v)]. (@D)
veV

Therefore, the objective of the Oblivious strategy is to place
the (i+1)th edge after having placed the previous ¢ edges
satisfying:

argmin {Z |A(v)|

veV

Aq '~-A617 A(eHl) = .]:| ) (2

where A, is the location of the ith edge, j is the ID of
a machine in the distributed system. Oblivious runs
the greedy heuristic independently on each machine and
it reduces the number of overall vertex replicas in the
distributed graph. This enhances the graph computing
efficiency.

LightGraph [19] is a lightweight distributed graph-
parallel synchronizing communication mechanism. Its pro-
totype is currently implemented based on PowerGraph.
That work first summarizes and defines PageRank-like
algorithm, in which the direction of data access happening
in an edge is always consistent with the direction of that
edge. According to this feature LightGraph identifies and
eliminates the redundant synchronizing communication for
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Fig. 2. The GAS computing model of PowerGraph.

PageRank-like algorithm. In particular, the mirror without
outgoing edge does not need to be synchronized by its
master. In order to minimize the required synchronizing
communications LightGraph also proposes an edge direc-
tion-aware graph partitioning strategy, which takes the
direction of edge as a heuristic parameter in the initial graph
partition phase. This new graph partitioning strategy opti-
mally isolates the outgoing edges from the incoming edges
of a vertex. However, LightGraph can only reduce the syn-
chronizing communication overhead happening in the
graph computing, which limits its effectiveness. And also,
LightGraph only works for PageRank-like algorithms. This
seriously limits its scope of application.

3 THE PARTIAL Sum DIFFERENCE BASED
COMPUTING MODEL

Like other distributed graph-parallel computing systems, to
process a large-scale graph, Ligraph first partitions a graph
into smaller sub-graphs and then distributes the sub-graphs
among the computing nodes. Ligraph adopts vertex-cut
strategy to conduct the partition. Replicas have to be created
for the vertices across the cutting-line. From the original
vertex and its replicas, one is randomly selected and nomi-
nated as master. And other replicas are noted as mirrors.
Computation states and data traverse the sub-graphs placed
on different machines via the communications between the
master and the mirrors. Similar to PowerGraph, in Ligraph
communications mainly happen in the Gather result com-
munication phase and the synchronization phase. However,
different from PowerGraph Ligraph adopts a new Gather
partial sum difference based computing model.
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In order to detail this model, we first introduce the GAS
computing model of PowerGraph. In GAS computing
model the execution of a vertex program consists of three
phases: Gather, Apply and Scatter (Fig. 2). In particular,
Gather function runs locally on each replica of a vertex
(including all mirrors and master). Once it is finished the
Gather partial sum is sent from each mirror to master. The
master runs the Apply function and then synchronizes all
mirrors with the updated vertex data. At last, the Scatter
phase is run in parallel on all replicas of this vertex.

Ligraph adopts a new Gather partial sum difference based
computing model (Fig. 3). In particular, instead of calculat-
ing Gather partial sum the Gather function in Ligraph calcu-
lates the Gather partial sum difference between the former
iteration and current iteration of each replica. In order to
achieve this Ligraph keeps the Gather partial sum of former
iteration and calculates the Gather partial sum of current iter-
ation. Then, Ligraph calculates the difference of these Gather
partial sums. On the other hand, the Apply function in this
new computing model calculates the new value of vertex
data by summing the original value with the Gather partial
sum differences collected from all replicas. The motivation
of proposing this Gather partial sum difference based
computing model is to reduce the Gather communication
overhead, which is detailed in the following section.

Ligraph collects the Gather partial sum differences
from each replica of a vertex and sums them with the
original vertex value on master side. During this whole
process there is no data information missed, which
guarantees that the final result of vertex data is equal to
that calculated under the GAS computing model of
PowerGraph. Thus, the Gather partial sum difference
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Fig. 3. The partial sum difference based computing model of Ligraph.

computing model does not impact the functionality and
accuracy of the vertex-program.

Gather partial sum difference based computing model
additionally introduces the difference computing operation
between partial sums on each mirror. However, compared
with the workload of the complex vertex-program in most
machine learning algorithms this overhead is negligible.

4 THE LIGHTWEIGHT COMMUNICATION
MECHANISM

In PowerGraph each mirror needs to send its Gather partial
sum to its master, and the master needs to synchronize all
its mirrors by sending them the synchronizing message.
Thus, the overall communication volume is proportional to
the number of mirrors. For complex and large-scale graph,
the number of mirrors may quickly expand with more com-
puting machines used. Then the high communication over-
head may limit not only the performance but also the
scalability of the system.

By adopting the Gather partial sum difference based
computing model, Ligraph is able to reduce the Gather com-
munication overhead dramatically. Instead of sending
Gather partial sum to master, In Ligraph, each mirror sends
Gather partial sum difference to master. Thus, if the differ-
ence is equal to 0 the corresponding Gather communication
is able to be avoided. So, Ligraph first checks the Gather
partial sum difference value. Only when the difference is
not equal to 0 the Gather communication is launched.

For PageRank-like algorithms [19] Ligraph additionally
employs the lightweight synchronizing communication
mechanism and edge direction-aware partition (EDAP)
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strategy proposed in our former work [19]. In brief, Ligraph
cuts the synchronizing communications for the mirrors
without outgoing edges, because the data on these mirrors
will never be accessed by other vertex programs in the
future computing. And in order to increase the proportion
of mirrors without outgoing edges among overall mirrors
Ligraph adopts the EDAP strategy, which takes the direc-
tion of edge as a heuristic parameter and optimally isolates
the outgoing edges from the incoming edges of a vertex,
to distribute the original graph to computing machines. In
particular, Ligraph employs the EDAP_Random and
EDAP _Oblivious partition methods, which are detailed in
work [19]. Fig. 4 compares the communication patterns of
PowerGraph and Lighraph. As the figure demonstrates
compared with PowerGraph, Ligraph can achieve a light-
weight communication among the working machines.

Figs. 5 and 6 illustrate the possible communication senar-
ios for a sample graph. In this example, under EDAP place-
ment edge (A — J) and edge (A — 1), which both are
outgoing edge of vertex A, are placed in the same machine
(M1), and edge (H — A) and edge (G — A), which both
are incoming edge of vertex A, are placed in the same
machine (M3). Thus, in the new placement the mirror of ver-
tex A on machine 3 turns to be a mirror without outgoing
edge like the mirror on machine 4. Therefore the synchroniz-
ing communication for this mirror can be cut. Also, assuming
in current iteration the Gather partial sum differences on
mirrors on machine 0, 1, and 3 are equal to 0, then these mir-
rors do not need to launch Gather communications. EDAP
has effectiveness on reducing the synchronizing communi-
cation overhead and does not have direct effectiveness on
reducing the Gather partial sum difference communication
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Fig. 4. The communication pattern comparing between PowerGraph and
Ligraph; (a) PowerGraph; (b) Ligraph with Gather partial sum difference
being not equal to 0; (c) Ligraph with Gather partial sum difference being
equal to 0; (d) Ligraph with master communicating with a mirror, which
has no outgoing edges, in PageRank-like algorithm and the Gather par-
tial sum difference being not equal to 0; (e) Ligraph with master commu-
nicating with a mirror having no outgoing edges in PageRank-like
algorithm and the Gather partial sum difference being equal to 0.

overhead. This is also demonstrated by our experiment
results (See Figs. 7 and 8 and the related analysis).

5 VoOLUME OF COMMUNICATIONS ANALYSIS

In this section we conduct the volume of communications
analysis. We look inside the distribution structure of a
graph and explore its relationship with the volume of
communications. While processing a graph G = {V, L}, in
both PowerGraph and Ligraph the majority of overall

Gather communication

Fig. 5. An illustration of communications of PagerRank in PowerGraph.

Synchronization

communications happen in the Gather partial sum trans-
mitting phase and the synchronization phase. Thus, our
analysis mainly focuses on this part of communications.
Because, PageRank-like algorithms can gain best benefit
from Ligraph, in order to demonstrate the optimal effec-
tiveness of Ligraph the extreme analysis in this section is
conducted for Pagerank-like algorithms. Table 1 explains
the related notations.

5.1 General Analysis

Given a vertex, v, according to the graph partition process in
PowerGraph and Ligraph all mirrors of v have edges. Thus
v's mirrors can be classified into the following three classes:

Gather communication
_/9 >

Fig. 6. An example of communications of PagerRank under EDAP-
based graph placement in Ligraph.

Synchronization
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Fig. 7. The number of synchronizing communication messages versus
the number of mirrors needing to be synchronized.

a. mirrors with both incoming and outgoing edge;

b. mirrors with outgoing edge and without incoming
edge;

c.  mirrors with incoming edge and without outgoing
edge;

We also introduce a flag, 4(v, 7), which subjects to

o(v, ) = 0 v is not active in the ith ireration
’ 1w is active in the ith ireration.

In PowerGraph. All mirrors need to send its Gather partial
sum to its master. And on the master side, after the Apply
phase is done, data on master is updated. Then the master
will synchronize all its mirrors with the new data.

All v's mirrors need to be synchronized by v’s master.
Thus, the number of synchronizing messages happening on
vertex v is:

n—1 2
|v.sync| = Z 8(v,1) Z lv_mj|| . (3
=0 =0

All v’s mirrors need to calculate their partial sums and
deliver these partial sums to v’s master. Thus, the number
of Gather communication messages happening on vertex
v is:

350 4
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(Random)
300 -
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250 Ligraph
(Random)
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Fig. 8. The number of Gather communication messages versus the aver-
age number of mirrors needing to send Gather message per iteration.

n—1 2
|v.gather| = Z o(v,1) Z lvomy) |- 4)
=0 =0

Thus, the total number of communication messages hap-
pening on vertex v is:
|v.total|

= |v.sync| + |v.gather|

n—1 2 n—1 2

=D o)) lo-myl |+ Jo(v,) Y fo-myl| - (5)
=0 j =0
n—1

=0 =0

= 22 o(v, 1) Z [v_mj| |

i=0 =0

There is no duplicated communication between any two dif-
ferent vertices. Consequently, the total number of communi-
cation messages happening in the whole graph is:
[Vi-1
|Vtotal| = Z |vi.total|
=0 ( 6)

[V]-1n-1 2

=2 0(vi,5) > [viema] |-
0

i=0 j= k=0

In Ligraph. In Ligraph, v’s mirror with no outgoing
edge does not need to be synchronized by v’s master.

TABLE 1

Notations
Symbol Description
n The number of iterations in a graph computing job
o(v,1) The flag indicating whether v is active or not in the ith iteration
r(v,1) The ratio of v’s mirrors with Gather partial sum difference is not equal to 0 in the ith iteration
[v_my| The number of v’s mirrors with both incoming and outgoing edge
[v_my | The number of v’s mirrors with no incoming edge
[v_ms| The number of v’s mirrors with no outgoing edge
|v.sync]| The number of synchronizing messages happening on vertex v
|v.gather| The number of Gather communication messages happening on vertex v
|v.total| The total number of communication messages happening on vertex v
|V.total| The number of communication messages happening on all vertices computing

P_reduced_comm

Percentage of reduced communication messages
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Thus, the number of synchronizing messages happening
on vertex v is:

n—1

= [8(v, i) (|v-mg| + [vma)]. )

=0

|v.sync]

In Ligraph, v’s mirror with Gather partial sum being equal
to 0 does not need to launch Gather communication to v’s
master. Thus, the number of Gather communication mes-
sages happening on vertex v is:

n—1

2
> 0w, iyr(,d) Y foamy]]. ®)
=0

=0

|v.gather| =

The number of total communication messages happening
on vertex v is:

|v.total]
= |v.sync| + |v.gather|

n—1 n—1

- Z[@(v, i) (Jv-mol + [v-ma[)] +

2
o(v,3)r(v, 1) Z |v_mj|}
=0 =0

[@(v, i) (|v_m0 + |voma| + r(v, 7) Z |U_mj>]

=0

Q
3
- o

Il
i

3
—

= [Q(% (L +7(0,4) D Jo-my| = Iv—mz|)] :

0 =0

.
I

9)
Consequently, the number of total communication mes-

sages happening in the whole graph is:

=
|Vtotal| = Z |v;.total|

i=0

vl — 2
= ZZ[ 9 (vi, (47 (vi, ) D Jviomy| —

=0 j=0 k=0

vi-ma) |-

(10)

Thus the number of reduced communication messages
achieved by Ligraph over PowerGraph is:

|Vt0tal|Rcduccd

[V]-1n-1 2
S99 (TR ]
=0 j=0 k=0
\V| 1n—1 2
-3 {m’j)((l +r(vi ) Y Jvi-my] — |v7;-m2|>}
=0 j=0 k=0
[V]=1 n—1
= Z Z |:Q)(’Uz,j)((1 —r(v,j Z [v;-myg| + |v; m2|)]
=0 =0 =0
(ChD)
Thus,
P_reduced_comm /100
PO (12)

ey TS o0 1) S [ mal]

in which
9
0 = 0w, ) (1 = (05, ) 3 Jor-mel + oymal).
k=0

(13)

5.2 Extreme Analysis

In Ligraph, it is possible that all outgoing edges of a vertex v
are aggregated in a small number of v’s mirrors. Thus, in
the extreme case:

[V]-1 V-1 2

tim [ S ffovmal) = D2 (Jui-ml]

i=0 i=0 k=0

(14)

And in the extreme case, in each iteration, all mirrors’
Gather partial sum difference are equal to 0. Thus,

|V\*1 n—1
lim > > "[r(vi, )] = 0. (15)
=0 j=0
Thus, in the extreme case:
lim [P_reduced_comm/100]
~ lim F'V 0 S0 00 1) (g il + |v7:_mQ>J]
23y o) Sio boemal) ]

= lim {ZV lzn 010, )23, ’Uz-mk]}
QZ‘Z‘QO 12” alo(vi, 9) Sn_ [vimy]
=1.

Thus, in the extreme case, Ligraph can eliminate all commu-
nication overhead happening in PowerGraph.

Table 2 compares the key characteristics of Ligraph with
three state-of-the-art graph parallel platforms.

6 EXPERIMENTAL EVALUATION

In this section, we demonstrate the comparative effective-
ness of various aspects of Ligraph over PowerGraph and
LightGraph through experiments.

6.1 Experiment Environment

Our experiments were conducted on a 65-node (528 pro-
cessors) Linux-based cluster. The cluster consists of one
front-end node that runs the TORQUE resource manager
and the Moab scheduler and 64 computing (worker) nodes.
Each computing node has 16 GB of RAM and 2 quad-core
Intel Xeon 2.66 GHz CPUs. The /home directory is shared
among all nodes through NFS. Due to some hardware
resource limitation, not all the 64 computing nodes can be
used. Thus, we used up to 48 nodes in our experiment.

6.2 Benchmarking Algorithms and Data Set

We selected PageRank, SSSP (directed shortest path) and
Triangle counting detailed in Table 3 as benchmarking algo-
rithms. And we computed three data sets listed in Table 4.
These data sets are all large-scale graphs. The selection stan-
dard is to select graphs extracted from real-world use with
diverse characteristics and different scales in size.

6.3 Experiment Design and Results

We ran the benchmarking algorithms on the selected data
sets and compared metrics measured in Ligraph with those
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TABLE 2
Comparing Key Characteristics of Ligraph with Existing Graph-Parallel Platforms

Metrics Pregel [10] GraphLab [15] PowerGraph [16] Ligraph
Comm. overhead o< # of edge-cuts o # of edge-cuts o # of mirrors o # of partial mirrors
Graph placement Edge-cut Edge-cut Random and Greedy vertex-cut Random, Greedy and EDAP vertex-cut
Computing model Sync. Sync. & Async. Sync. & Async. Sync. & Async.
Dynamic comm. no no yes yes
Load balance no no yes yes

TABLE 3

Summary of Benchmarking Algorithms

Algorithm Characteristics Application Illustration Category
PageRank Iterative, high communication Importance ranking PageRank-like
SSSP (shortest path) Iterative, medium communication Decision making PageRank-like

Triangle Counting

Single step, medium communication

Clustering coefficient General

TABLE 4
Summary of Data Sets

Graph Description #of vertices #ofedges Graphdensity Averagedegree Memory size
(x107°) (GB)
soc-LiveJournal [18]  Friednship social network 4,847,571 68,993,773 0.59 14 10.3
Twitter [18] Social news website 11,316,811 85,331,846 0.13 8 23.2
BFS1 [20] Facebook social networks 61,876,615 336,776,269 0.02 5 51.6

in PowerGraph and LightGraph, respectively. Experiments
are conducted under both synchronous and asynchronous
computation modes and all presented results come from the
average of at least three runs.

First, we ran PageRank on sov-LiveJournal data set. And
we measured the numbers of each kind of mirrors and the
total numbers of various communication messages happen-
ing in the whole graph computing process. In particular, we
measured the Gather partial sum communications and the
synchronizing communications, which dominates the com-
munications in the whole job in PowerGraph and Ligraph.
We conducted 100 times running for each case and calcu-
lated their average value. Figs. 7 and 8 plot the results under
synchronous mode using 16 machines. In Fig. 7 the numbers
of mirrors needing to be synchronized under Ligraph are
actually the numbers of mirrors with outgoing edge. As
Fig. 7 shows 86.8 and 89.6 percent of overall mirrors have
outgoing edge under Random and Oblivious placement,
respectively. And Ligraph only synchronizes this propor-
tion of mirrors. Instead PowerGraph needs to synchronize
all mirrors. Consequently, the numbers of synchronizing
communication messages are reduced by 14.7 and 10.8 per-
cent by Ligraph (Random) and Ligraph (Oblivious) over
PowerGraph (Random) and PowerGraph (Oblivious),
respectively. And under EDAP_Random and EDAP_Obli-
vious the percentages of mirrors with outgoing edge are
reduced to 71.5 and 82.8 percent, respectively. Consequently,
the numbers of synchronizing communication messages are
reduced by 26.4 and 16.5 percent by Ligraph (EDAP_Ran-
dom) and Ligraph (EDAP_Oblivious) over PowerGraph
(Random) and PowerGraph (Oblivious), respectively. Fig. 8
demonstrates the result of the number of Gather communica-
tion messages happening in the whole job and the average
number of mirrors needing to send Gather message per

iteration. As expected, compared with PowerGraph Ligraph
reduced the number of mirrors needing to send Gather mes-
sage and consequently the number of Gather communication
messages is reduced. The result also demonstrates that there
is no strong correlation between the graph placement strat-
egy and the effectiveness of Ligraph in reducing the volume
of Gather communication overhead. This is because redis-
tributing edges among machines according to the edge direc-
tion does not have direct influence on the Gather partial sum
difference of a mirror.

Fig. 9 shows the volume of communications happening
in PageRank running in PowerGraph and Ligraph, respec-
tively. The data set computed is the Twitter data set. Fig. 10
shows the corresponding results on LiveJournal data set. As
expected, Ligraph and its EDAP strategy can significantly
reduce the communication overhead for PageRank. For
example, for LiveJournal dataset Ligraph (EDAP_Ran-
dom) can consistently reduce at least 20.8 percent com-
munications when the number of machines is larger than
4 under synchronous mode over PowerGraph (Random).
Under asynchronous mode, over PowerGraph (Random)
the maximal communication reduction achieved by
Ligraph (EDAP_Random) is 35.2 percent while processing
Twitter data set. Moreover, as the number of machines
increases, the volume of communications reduced by
Ligraph also increases.

Figs. 11 and 12 show the PageRank runtime on Twitter
and LiveJournal data set, respectively. By reducing the
volume of communications, Ligraph shortens the runtime
of PageRank under both synchronous and asynchronous
modes. Moreover, by using EDAP strategy Ligraph further
accelerates the execution of PageRank. For example, for
Twitter data set, over asynchronous PowerGraph (Random)
the maximal runtime reduction achieved by asynchronous
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Fig. 11. Comparing the PageRank runtime for Twitter between Ligraph and PowerGraph.

Ligraph (EDAP_Random) is 21.8 percent. Furthermore,
Ligraph shows consistent performance gains as the number
of machines used increases. For instance, among all cases
presented Ligraph (EDAP_Oblivious) can shorten at least

14.6 percent runtime over PowerGraph (Oblivious) on Live-
Journal dataset under synchronous mode.

Our experiment results of SSSP also verify the effective-
ness of Ligraph and its EDAP partition strategy. We took the
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Fig. 12. Comparing the PageRank runtime for LiveJournal between Ligraph and PowerGraph.

results processing BFS1 data set under synchronous mode as
example and presented them in Fig. 13. As the figure shows,
up to 30.2 and 16.1 percent improvement in volume of com-
munication and runtime are achieved by Ligraph with
EDAP strategy, respectively. And, better effectiveness is
achieved with the number of machines used increasing.

Although, for the benchmarking algorithms, the commu-
nication overhead has been drastically reduced, the overall
runtime does not decrease significantly in the same scale.
The reason is that a bulk of communication overhead in exe-
cuting these algorithms can be already hidden in the GAS
three-phase programming model of PowerGraph. More-
over, for a CPU-bound algorithm such as PageRank, the
effect of eliminating communication overhead on runtime
performance will not be that evident.

Fig. 14 shows the volume of communications of Pag-
eRank in LightGraph and Ligraph processing the Twitter
data set under asynchronous and synchronous computation
mode, respectively. Fig. 15 shows the corresponding results
on LiveJournal data set. As the figures demonstrate,
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compared with LightGraph the volumes of communications
in PageRank execution under both modes in Ligraph are
reduced. For example, for LiveJournal dataset Ligraph
(EDAP_Oblivious) can consistently reduce at least 15.2
percent communications when the number of machines is
larger than 2 under synchronous mode over LightGraph
(EDAP_Oblivious); Over asynchronous LightGraph
(EDAP_Random) the maximal network I/O reduction
achieved by asynchronous Ligraph (EDAP_Random) is 21.8
percent while processing the Twitter data set. Moreover, as
the number of machines increases, the volume of communi-
cations reduced by Ligraph also increases.

Figs. 16 and 17 compare the PageRank runtime in
LightGraph and Ligraph on Twitter and LiveJournal data
set, respectively. As shown in the figures, compared with
LightGraph Ligraph shortens the runtime of PageRank
under both synchronous and asynchronous modes. For
example, for Twitter data set, over synchronous LightGraph
(EDAP_Random) the maximal runtime reduction achieved
by synchronous Ligraph (EDAP_Random) is 14.3 percent.
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Fig. 13. Comparing the runtime and volume of communications for SSSP running on BFS1 dataset under synchronous computation mode between

Ligraph and PowerGraph.
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Fig. 16. Comparing the PageRank runtime for Twitter between Ligraph and LightGraph.

Furthermore, Ligraph shows better performance gains as
the number of machines used increases.

In all presented experiments we outputted the final com-
puting results of the algorithms and compared the results
among Ligraph, PowerGraph, and LightGraph. The results
are all consistent.

Fig. 18 compares the graph computing speedup of Pag-
eRank between PowerGraph and Ligraph. The speedup of
PowerGraph is low. Especially, the speedup under Random

placement is the worst, which is less than 2.0 using 48
machines. The reason of this poor speedup is that Random
placement creates a large number of replicas of vertices,
which increases both the computing workload and the com-
munication overhead among computing nodes. Oblivious
placement reduces the number of vertex replicas by greed-
ily placing edges on machines, which already have the
vertices in that edge. Thus, the speedup is improved.
Upon PowerGraph, Ligraph lightens the communication
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Fig. 17. Comparing the PageRank runtime for LiveJournal between Ligraph and LightGraph.

overhead happening in the graph computing. Conse-
quently, the speedup is increased. Better speedup achieved
by Ligraph and its EDAP partition strategy also demon-
strates the effectiveness of them in large scale distributed
graph computing.

In Figs. 19 and 20 we provide runtime comparisons of
Ligraph with several representative existing systems for
PageRank and Triangle counting, respectively. In our
experiments Giraph, GPS, and GraphX all adopt their sys-
tem default graph partition strategy: random edge-cut parti-
tioning. And because all these there systems do not support
asynchronous graph computing they all conduct the graph
computing under synchronous computing mode. As the
results demonstrate Ligraph outperforms other systems in
runtime for both PageRank and Triangle counting. For
example, while computing Livejournal data set the runtimes
of Giraph and GPS are 122.3 and 110.6 s, respectively. On
the other hand, the runtime of Ligraph (Sync, EDAP_Obli-
vious) is only 49.9 s. And for Twitter data set the runtimes
of GraphX and PowerGraph (sync random) are 137.8 and
42.1 s, respectively, while the runtime of Ligraph (Sync,
Random) is only 35.6 s.
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Fig. 18. Comparing the PageRank runtime speedup between Power-

Graph and Ligraph under synchronous mode while computing the Twit-
ter data set.

7 RELATED WORK

A number of distributed graph-parallel abstractions have
emerged in literatures. Pregel [10] explores graph-paralleli-
zation through the use of a bulk synchronous distributed
message-passing system. Several other systems are succes-
sor of Pregel including GPS [11], Giraph [13], GoldenOrb
[21], Mizan [22], and Phoebus [23]. Gregor and Lumsdaine
proposed the parallel BGL [9]: a generic C++ library for dis-
tributed graph computation and applies the paradigm of
generic programming to the domain of graph computations.
Kineograph [12] takes a stream of incoming data to con-
struct a continuously changing graph, which captures the
relationships that exist in the data feed. Stutz et al. proposed
the Signal-Collect [14] framework to concisely specify and
execute a number of computations that are typical for
Semantic Web. Gunrock [24], Medusa [25], CuSha [26], and
MapGraph [27] are designed for the large-scale graph ana-
lytics on the GPU. Among the numerous graph-parallel
computing systems PowerGraph [16], PowerLyra [17],
GRACE [28] and Trinity [29] support both synchronous and
asynchronous executing modes for graph algorithms. Naiad
[30], [31] is able to conduct incremental iterative computa-
tion. However, it adopts traditional synchronous check
pointing for fault tolerance and cannot respond to stragglers
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Fig. 19. PageRank runtime comparison between multiple systems on
Livejournal data set while using 48 machines.
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[32]. PowerLyra [17] dynamically applies different compu-
tation and partitioning strategies for different vertices. Dis-
tributed GraphLab [15] and its successor, PowerGraph [16]
exhibit more excellent performance than others with better
graph processing rate and higher scalability [33], [34], [35].
Cyclops [36] is also a vertex-oriented graph-parallel frame-
work. However, compared with PowerGraph (written in C
++) its java implementation based on Hama [37] drags its
runtime performance down.

In order to deal with the inherent problem, communica-
tion overhead, in distributed computing systems, much effort
has been done as well. In traditional message passing abstrac-
tions, such as Pregel [10], Giraph [13], and GPS [11], all ver-
tex-programs run simultaneously in a sequence of super-
steps. In each super-step, each program instance receives all
messages sent by its neighbors in the previous super-step
and sends messages to its neighbors for next super-step [16].
In order to reduce the number of communication messages,
Pregel introduces a commutative associative message com-
biner, which merges messages destined to a same vertex [10].
Work [38] proposes asynchronous broadcast and reduction
operations to reduce communication associated with high-
degree vertices. PowerGraph [16] abstraction employs GAS
(Gather, Apply, and Scatter) graph computing model and
ensures the changes made to the vertex or edge data are auto-
matically visible to adjacent vertices. Thus, PowerGraph
eliminates the messages transferred between adjacent verti-
ces. LFGraph [39] uses techniques such as cheap hash-based
graph partitioning, publish-subscribe information flow,
fetch-once communication, single-pass computation, in-
neighbor storage and so on, which incur lower communica-
tion overhead than other systems. LightGraph [19] tries to
identify and eliminate the unnecessary communications in
distributed graph-parallel platforms. However it just looks at
the synchronous communication.

8 CONCLUSION AND FUTURE WORK

Driven by the need to process large-scale graph data numer-
ous distributed graph-parallel computing systems have
been proposed. However, the communication overhead in
distributed graph-parallel computing systems drags down
the performance of these systems. This work proposes

Ligraph, a distributed graph-parallel communication sys-
tem with lightweight communication overhead, to address
this problem. Our extensive experiment results on real-
world network data sets have demonstrated that compared
with PowerGraph and LightGraph Ligraph can not only
reduce the volume of communications significantly but also
improve the graph computing runtime performance.

Distributed big-data processing systems make it feasible
to perform computations on large volumes of data with
high complexity. However, the communication overhead in
these big-data computing frameworks are often overlooked.
Research on this topic will not only help to accelerate the
big-data processing jobs themselves but also alleviate net-
work I/0O workload of the underlying computing hardware
systems, which are shared by a number of applications on
HPC or cloud systems. This paper demonstrates the poten-
tial and positive results of work in this direction.

In the future we would like to attempt to introduce and
implement some communication reducing mechanisms
proposed in other systems (e.g., the Combiner mechanism
proposed by Pregel [10] and the dynamic repartitioning
scheme in GPS [11]) in Ligraph to further reduce the com-
munication overhead suffered by distributed graph-parallel
computing.
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