
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011 1405

Design and Implementation of a Fast Dynamic
Packet Filter

Zhenyu Wu, Mengjun Xie, Member, IEEE, and Haining Wang, Senior Member, IEEE

Abstract—This paper presents Swift, a packet filter for high-per-
formance packet capture on commercial off-the-shelf hardware.
The key features of the Swift include: 1) extremely low filter update
latency for dynamic packet filtering, and 2) gigabits-per-second
high-speed packet processing. Based on complex instruction set
computer (CISC) instruction set architecture (ISA), Swift achieves
the former with an instruction set design that avoids the need
for compilation and security checking, and the latter by mainly
utilizing single instruction, multiple data (SIMD). We implement
Swift in the Linux 2.6 kernel for both i386 and x86_64 archi-
tectures and extensively evaluate its dynamic and static filtering
performance on multiple machines with different hardware setups.
We compare Swift to BPF (the BSD packet filter)—the de facto
standard for packet filtering in modern operating systems—and
hand-coded optimized C filters that are used for demonstrating
possible performance gains. For dynamic filtering tasks, Swift is at
least three orders of magnitude faster than BPF in terms of filter
update latency. For static filtering tasks, Swift outperforms BPF
up to three times in terms of packet processing speed and achieves
much closer performance to the optimized C filters. We also show
that Swift can harness the processing power of hardware SIMD
instructions by virtue of its SIMD-capable instruction set.

Index Terms—Linux kernel networking, packet filter.

I. INTRODUCTION

A PACKET filter is an operating system kernel facility that
classifies network packets according to criteria given by

user applications and conveys the accepted packets from a net-
work interface directly to the designated applications without
traversing kernel networking stack. Since the birth of the sem-
inal BSD packet filter (BPF) [1], packet filters have become es-
sential to a variety of network services ranging from traffic mon-
itoring [2] [3] to network engineering [4] and intrusion detec-
tion [5]. In recent years, with escalating protocol complexity and
dramatically increasing network speed, packet filtering has been
facing intensified challenges posed by dynamic filtering tasks
and stringent filtering requirements. However, existing packet
filters have not yet fully addressed these challenges in an effi-
cient and secure manner.

Manuscript received April 21, 2010; revised November 08, 2010; accepted
January 18, 2011; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor P. Crowley. Date of publication February 24, 2011; date of current ver-
sion October 14, 2011.

Z. Wu and H. Wang are with the Department of Computer Science, College
of William and Mary, Williamsburg, VA 23187 USA (e-mail: adamwu@cs.wm.
edu; hnw@cs.wm.edu).

M. Xie is with the Department of Computer Science, University of Arkansas
at Little Rock, Little Rock, AR 72204 USA (e-mail: mxxie@ualr.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2011.2111381

Dynamic filtering tasks refer to online packet filtering pro-
cedures in which filtering criteria frequently change over time.
Typically, when a filtering task cannot fully specify its criteria
a priori and the unknown part can only be determined at
run-time, the filtering criteria have to be updated throughout the
filtering process. For example, many protocols, such as FTP,
Real Time Streaming Protocol (RTSP), and Session Initiation
Protocol (SIP), establish connections with dynamically negoti-
ated port numbers. Capturing the network traffic that uses such
protocols requires dynamic filtering. Even with predetermined
filter criteria, it is often necessary to use dynamic filtering.
For instance, a network intrusion detection system (NIDS)
needs to perform expensive deep traffic analyses on suspicious
network flows. However, applying such a costly procedure to
every packet in high-volume traffic would severely overload
the system. Instead, an NIDS could first apply simple filtering
criteria, such as only monitoring traffic to and from a honeypot
or a darknet. When suspicious activities are detected, the NIDS
can then update its filtering criteria to capture all the traffic
related to the activities for deep inspection.

As the de facto packet filter on modern UNIX variants, BPF
has shown insufficiency in handling both static and dynamic
filtering tasks, particularly the latter [6]–[8]. A filter update in
BPF must undergo three “preprocessing” phases: compilation,
user-kernel copying, and security checking. In the compilation
phase, the filtering criteria specified by the human-oriented pcap
filter language [9] are translated and optimized into the ma-
chine-oriented BPF filter program. In the user-kernel copying
phase, the compiled filter program is copied into the kernel. Fi-
nally, in the security checking phase, the kernel-resident BPF
instruction interpreter scrutinizes the filter program copy to en-
sure that the program does not contain potentially dangerous op-
erations such as backward branches. Consequently, an update to
a BPF filter may induce prolonged latency, which ranges from
milliseconds up to seconds depending on criterion complexity
and system workload. In high-speed networks, hundreds or even
thousands of packets of interest might be missed by BPF during
each filter update, effectively leaving a “window of blindness.”
Frequent filter updates, often required by a dynamic filtering
task, exacerbate the degree of blindness. A “window of blind-
ness” coinciding with the initialization of a new session can
cause serious problems on certain applications such as NIDS
since the beginning of a network connection normally is of par-
ticular interest for security analysis [10].

Recent packet filters such as xPF [8] and FFPF [6] move more
packet processing capabilities from user space into the kernel,
which reduces context switches and improves overall perfor-
mance. However, neither filter directly addresses the issue of
slow filter update. Because xPF uses the BPF-based filtering

1063-6692/$26.00 © 2011 IEEE

1406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

engine, it offers no improvement on filter update latency. FFPF
attempts to avoid filter update by introducing kernel space li-
brary functions, called external functions, which are precom-
piled binaries for specific functionalities such as parsing net-
work protocols and updating filtering states. The use of external
functions speeds up filtering and eases extensibility, but it also
increases filter programming and updating complexity. External
functions have full privileges to access the kernel, and thus they
must be subjected to careful examination for potential secu-
rity bugs at each loading, making them a poor fit for frequent
updates.

In this paper, we propose Swift, a packet filter that takes an
alternative approach to achieving high performance, especially
for dynamic filtering tasks. Like BPF, Swift is based on a fixed
set of instructions executed by an in-kernel interpreter. Unlike
BPF, Swift is designed to optimize filtering performance with
powerful instructions and a simplified computational model,
and more importantly, to significantly reduce filter update
latency. The Swift instruction set accomplishes common
filtering tasks with a small number of fixed-size “complex”
instruction set computer (CISC)-like instructions. In addition,
the Swift instruction set architecture (ISA) enables support for
more powerful optimization techniques, namely single instruc-
tion, multiple data (SIMD) extension, hierarchical execution
optimization, and platform-specific hardware acceleration.
Combining the powerful instructions with the simplified com-
putational model, Swift removes filter compilation and security
checking in filter update, and thereby significantly improves
dynamic filtering performance in terms of filter update latency.

We implement Swift in the Linux 2.6 kernel for both i386
and x86_64 architectures. The kernel implementation of Swift is
fully compatible and can coexist with Linux Socket Filter (LSF),
“a BPF clone” in Linux. The Swift user-space libraries provide
a BPF-friendly application programming interface (API) with
“pcap-like” filter syntax for backward compatibility and an ob-
ject-oriented API that simplifies filter coding. To validate the
efficacy of Swift, we conduct extensive experiments on mul-
tiple machines with different hardware setups. We compare the
performance of Swift to that of LSF and optimized C filters.
The C filters are used to demonstrate the possible performance
gains obtainable by optimized binary code. For dynamic fil-
tering tasks, Swift achieves at least three orders of magnitude
lower filter update latency than LSF and reduces the number of
missing packets per connection by about two orders of magni-
tude in comparison to LSF. For static filtering tasks with simple
filtering criteria, Swift runs as fast as LSF. However, with com-
plex filtering criteria, Swift outperforms LSF up to three times
in terms of packet processing speed and performs much closer
to the optimized C filters than LSF.

We further augment Swift by leveraging the parallel pro-
cessing power of hardware SIMD instructions. We first demon-
strate Swift’s ability to transparently utilize the Streaming
SIMD Extensions (SSE) instruction set—SIMD extensions
that are now universally supported by modern x86 processors.
Then, we analyze and measure how the SSE instructions can be
used to accelerate filter execution speed. Finally, we present a
comparison of filter execution times between our SSE enhanced
Swift engine and the original Swift engine. Our results show

that, exploiting the hardware SIMD instructions, Swift can
achieve significant speedups for large and complex filters.

The remainder of this paper is structured as follows. Section II
surveys related work on packet filters. Section III details the de-
sign of Swift. Section IV describes the implementation of Swift.
Section V evaluates the performance of Swift. Section VI dis-
cusses the performance boost of Swift from hardware SIMD
support. Section VII concludes the paper.

II. RELATED WORK

Packet filters play a major role in network monitoring and
measurement due to its simplicity, universal installation, high
cost-effectiveness, and rich applications. The CMU/Stanford
Packet Filter (CSPF) [11], a kernel-resident network packet
demultiplexer, introduces the concept of packet filter. CSPF
provides a fast path, instead of the normal layered/stacked
path, for network packets to reach their destined user-space
applications. Thus, the filtering in CSPF refers to delayered
demultiplexing [12]. CSPF is designed to facilitate the imple-
mentation of network protocols such as TCP/IP at user space.
The characteristic of kernel-resident and protocol-independent
packet filtering in CSPF design has been widely adopted by
successive packet filters.

BPF [1] aims to support high-speed network monitoring ap-
plications such as [9]. Users inform the in-kernel fil-
tering machine of their interests through a predicate-based fil-
tering language [13], and then receive from BPF the packets
that conform to filtering criteria. To achieve high performance,
BPF introduces in-place packet filtering to reduce unnecessary
cross-domain copies, a register-based filter machine to fix the
mismatch between the filter and its underlying architecture, and
a control flow graph (CFG) model to avoid redundant computa-
tions. [14] further enhances the performance of BPF by
exploiting global data-flow optimization to eliminate redundant
predicates across filter criteria and employing just-in-time com-
pilation to convert a filtering criterion to native machine code.
xPF [8] increases the computation power of BPF by using per-
sistent memory and allowing backward jumps.

[15] is a special monitoring tool developed to capture
Internet multimedia traffic, in which dynamic ports are widely
used. is based on and reduces the cost of cri-
terion compilation to efficiently handle dynamic ports. A cus-
tomized function in assembles new filtering criteria by
using pieces of precompiled criterion blocks preserved from the
initial filter compilation. Swift’s high-level SIMD instructions
and hierarchical instruction optimization can be viewed as a
generalization of this technique, but Swift’s techniques apply
to any type of filter and require no special compiler techniques.

Mach Packet Filter (MPF) [16], PathFinder [17], and
Dynamic Packet Filter (DPF) [18] are filters designed to de-
multiplex packets for user-level networking. MPF extends the
instruction set of BPF with an associative match function to
efficiently demultiplex packets for multiple user-level appli-
cations. PathFinder abstracts the filtering process as a pattern
matching process and adopts a special data structure for the
abstraction. The abstraction makes PathFinder amenable to
both software and hardware implementations and capable of
handling gigabits-per-second network traffic. DPF utilizes

WU et al.: DESIGN AND IMPLEMENTATION OF FAST DYNAMIC PACKET FILTER 1407

dynamic code generation technology, instead of a traditional
interpreter-based filter engine, to compile packet filtering
criteria into native machine code.

The Fairly Fast Packet Filter (FFPF, later renamed as
Streamline) [6] is the most recent research on packet filter.
FFPF is a framework for network monitoring, which distin-
guishes itself from all other packet filters such as BPF. Multiple
packet filtering programs can be simultaneously loaded into
FFPF. The processing flow among these programs is organized
as a directed graph. FFPF employs flow group, shared circular
buffers, and even hardware to reduce the cost of packet copying
among multiple concurrent filtering programs. FFPF expands
filter capacity via external functions, which are essentially
native code running in kernel space. In addition, FFPF features
language-neutral design and provides backward compatibility
with BPF.

FFPF and Swift are complementary as they target different
problems. FFPF focuses on the packet-filtering framework, and
its main contribution lies in the improvement of scalability for
supporting multiple concurrent monitoring applications, while
Swift aims at the packet-filtering engine and provides a fast,
flexible, and safe filtering mechanism for individual applica-
tions. By virtue of the language-neutral design of FFPF, Swift
can be implemented within the FFPF framework, taking advan-
tages of both designs.

In addition to software-based packet capture solutions, hard-
ware-based solutions such as [19] have been proposed to meet
the challenge posed by extremely high-speed networks. More-
over, there exist many specialized-architecture monitoring sys-
tems such as Nprobe [20] and SCAMPI [21].

Besides packet filtering, packet classification and deep
packet inspection (DPI) also play an important role in network
monitoring. Although they share the same quest for high
performance with packet filtering, they have quite different
applications and usages, and hence take different and orthog-
onal optimization approaches. Packet classification needs to
support massive simple matching rules lying in large search
space, and thus its research mainly focuses on exploiting highly
parallel data structures and hardware, such as HaRP [22],
Hypersplit [23], and TCAM-based schemes [24], [25]. DPI
requires using complex filtering rules, usually expressed in
the form of regular expressions, and thus its research aims at
accelerating regular expressing matching by utilizing various
automata conversions, such as DFA [26], D2FA [27], and
Tagged DFA [28].

III. DESIGN

In this section, we first present the motivation of Swift and its
design overview, then we detail the design of Swift, including its
unique ISA, and finally we analyze the characteristics of Swift
in terms of performance and security.

A. Motivation

The inefficiency of BPF observed in our past experiences di-
rectly motivated Swift’s design. The most significant perfor-
mance degradation of BPF occurs in dynamic filtering tasks.
This degradation is mainly caused by frequent filter updates.
As mentioned, the unduly long filter update latency in BPF is

attributed to three filter preprocessing operations: filter recom-
pilation, user-kernel copying, and security checking. While the
latter two play nonnegligible roles in the long delay, the majority
of the latency is introduced by filter recompilation [7], [15]. The
duration of a filter update in BPF would be significantly short-
ened if the recompilation were selectively performed only on the
changed primitive, or totally skipped, as accomplishes
for selected filtering tasks. However, for general-purpose net-
work monitoring tasks, recompiling the entire BPF filter is in-
evitable for each update because its instruction set architecture
and filter program organization are unsuitable for fast update.

BPF uses a RISC-like instruction set for a low-level register
machine abstraction. Thus, each pcap language primitive is
translated into an instruction block that comprises a variable
number of simple instructions. Changing a primitive in a filter
often alters the size of the corresponding instruction block.
Without recompiling, we need to modify code-offset-related
instructions (e.g., conditional branch) throughout the entire
compiled filter to accommodate the change. Control flow
optimization, which is indispensable for BPF to speed up filter
execution, makes the matter even worse. The BPF control
flow optimization merges multiple identical instructions into
one. This significantly reduces both filter program size and
execution time, but complicates updates to instructions shared
by several primitives.

In addition to filter update latency, we also find that the filter
execution efficiency of BPF can be improved substantially. The
RISC-like ISA in BPF induces high instruction interpretation
overhead. Interpretation overhead refers to the operations
an interpreter must perform before executing an actual filter
instruction, such as program counter maintenance, instruction
loading, operation decoding, and so forth. Those operations
are unproductive toward evaluating filter criteria, but cannot be
omitted. Because each BPF instruction accomplishes merely a
very simple task, such as loading, arithmetic, and conditional
branching, most of the CPU time in executing a BPF program
is spent uselessly as interpretation overhead, and the CPU
time spent in evaluating the actual packet filtering criteria only
makes up a small fraction of the total. Our measurement results
(detailed in Section V-B) show that the BPF interpretation
overhead is about 5.2 ns on average in a machine with Intel
Xeon EM64T 2.0 GHz CPU and makes up nearly 56% of the
average instruction execution time.

BPF’s continuing widespread use can be mainly attributed
to: 1) the generic pseudomachine abstraction, which guarantees
cross-platform compatibility; and 2) its natural-language-like,
primitive-based filter language, which ensures ease of use to ap-
plication developers and network administrators. Therefore, we
decide to inherit from BPF the pseudomachine abstraction and
language primitives while developing our own filtering model
to achieve significant performance improvement.

B. Design Overview

The primary objective of Swift is to achieve low filter up-
date latency. Our approach to reaching this goal is by reducing
filter criterion preprocessing on filter update as much as pos-
sible. More specifically, we attempt to avoid filter recompilation

1408 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

and optimization, allow “in-place” filter updating, and eliminate
security checking.

To achieve “compilation-free” update, filtering criteria must
map directly onto interpreter instructions. This makes a high-
level, CISC-like instruction set architecture a natural choice for
Swift. In addition to saving compilation time, the CISC-like in-
struction set also opens a door for performance optimization. A
complex Swift instruction is able to accomplish the same task
as several simple BPF instructions, thereby reducing instruction
interpretation overhead.

Two design choices are made to enable in-place filter modi-
fication: fixing instruction length and removing filter optimiza-
tion. By fixing the instruction length, we avoid the need to shift
instructions on instruction replacement. By removing filter op-
timization, not only do we save precious time during a filter up-
date, but also preserve one-to-one mapping between filtering
primitives and filter program instructions: no instructions are
shared. As a result, updates to a filter can be directly applied
to the affected instructions without altering other instructions or
filter program structure. This feature further helps to optimize
filter update by reducing unnecessary user-kernel data copying.
Only the updated part of a filter criterion is copied from user
space to the kernel.

A simplified computational model ensures filter program
safety for Swift without security checking. With the specialized
ISA, each Swift instruction is able to perform a set of complex
pattern-matching operations. The execution path of a filter
program is determined by the Boolean evaluation result of
each instruction: either continue (“true”) or abort (“false”).
Therefore, Swift does not need storage or branch instructions to
control the execution path of a filter program. With a fixed set
of instructions, acyclic execution path, and zero data storage,
any Swift filter program is safe to run in the kernel.

Our secondary objective is to increase filter execution effi-
ciency. We achieve this goal by exploring the following two
optimizations: SIMD expansion to the Swift instruction set
and hierarchical execution optimization. SIMD allows an inter-
preter to perform a single instruction interpretation and apply
the same operation on many sets of data, thereby significantly
reducing the cost of instruction interpretation. SIMD has been
widely used in contemporary high-performance processors,
such as Intel Pentium series and IBM Power series processors.
While Swift’s design ensures low filter update latency, it also
forfeits the benefit associated with filter program optimiza-
tion. To offset the possible performance loss, we introduce an
alternative optimization method called hierarchical execution
optimization. This optimization is based on our observation that
during a dynamic filtering process, the newly added primitives
are often related to some existing ones. For example, the new
primitives quite often monitor the same host, but on different
ports, or capture the same protocol traffic, but for different
hosts. Therefore, the existing primitives can be viewed as the
“parent” of the new primitives. Swift utilizes this hierarchical
relationship among primitives to avoid redundant instruction
executions. Instead of actively optimizing filter programs, i.e.,
performing automatic optimization in filter update, Swift makes
the primitive hierarchy a hint for the filter execution engine and
leaves applications responsible for constructing the hierarchy.

Fig. 1. Filter organizations of (a) BPF and (b) Swift for criteria matching HTTP
and DNS traffic.

Fig. 2. Swift filter structure.

Fig. 3. Swift instruction format.

C. Detailed Design

The Boolean logic in a Swift filter is organized in disjunctive
normal form. Fig. 1(b) illustrates the control flow organization
of Swift, while the control flow graph of BPF, which is se-
mantically equivalent, is shown in Fig. 1(a) for comparison. In
the Swift control flow organization, each disjunct cluster—the
rounded rectangle with shaded background—specifies a com-
plete set of primitives that a packet must satisfy in order to be
accepted by the Swift filter. In Swift, we name such a disjunct
cluster a Pass, meaning a “passage” of packets.

A pass consists of one or more literals. In a BPF filter, a lit-
eral corresponds to a pcap language primitive. Swift inherits
the primitives from BPF. However, instead of realizing a primi-
tive with multiple simple instructions, Swift maps each type of
primitive into a pseudomachine instruction—the basic building
block of a filter program. Fig. 2 illustrates the structure of a Swift
filter.

1) Swift Instruction Set: All Swift instructions have the
same size, facilitating fast instruction modification on filter
update. The Swift instruction layout is shown in Fig. 3, where
one 32-bit command field is followed by seven 32-bit parameter
fields. Such a nicely aligned 32-byte structure ensures efficient
memory accesses.

We formulate our instruction set based on BPF primitives.
We first classify BPF primitives into two categories according to
their addressing modes. “Direct addressing” primitives, such as

WU et al.: DESIGN AND IMPLEMENTATION OF FAST DYNAMIC PACKET FILTER 1409

TABLE I
SAMPLE OF SWIFT INSTRUCTION SET

“ether proto” and “ip src host,” fetch data from an absolute offset
in a packet. “L1 indirect addressing” primitives, such as “tcp dst
port,” address data by calculating the variable header length of
a protocol layer and adding a relative offset to it. We then gen-
eralize the manipulation and comparison operations used in the
semantics of BPF primitives. There are three types of basic op-
erations: 1) test if equal; 2) mask and test if equal; and 3) test if
in range. Each type also has some variations on operand width
(short or long integer). Finally, we design the complex instruc-
tions to accomplish the corresponding operations. We come up
with 14 different operations that, alone or by combination, are
able to perform equivalent operations of any BPF primitives ex-
cept “expr,” which involves arbitrary arithmetic.

To further exploit the CISC architecture and enhance per-
formance, we introduce a new addressing mode, “L2 indirect
addressing,” with four additional instructions. In the new ad-
dressing mode, filtering operations address data by first per-
forming “L1 indirect addressing” to retrieve the related infor-
mation, which is used to calculate the variable header length of
a deeper layer, and then adding the relative offset. While BPF
does not provide such primitives, there are practical demands
such as filtering based on TCP payload. Moreover, we add four
more “power instructions” that perform equivalent operations
of several frequently used BPF primitive combinations, such as
“ip src and dst net” and “tcp src or dst port.” Therefore, in total
Swift has 22 different types of instructions.

Table I lists a selection of Swift instructions, which captures
the characteristics of Swift’s CISC-like ISA. The four columns
from leftmost to rightmost refer to the addressing mode, the
instruction type, the instruction functionality, and the equiva-
lent BPF operation(s), respectively. Swift instructions are fairly
generic in that given different parameters, one Swift instruction
can function as several different pcap language primitives. Ex-
amples are given in the fourth column. Based on the Swift in-
struction set, we can derive alternative faster implementations
for some BPF primitives. For instance, the “ip and tcp port”
primitive in BPF requires three initial steps with six instruc-
tions to examine whether a packet is IP, nonfragment, and TCP.
In Swift, we can take advantage of the “continuous masked

comparison” instruction , to perform the same exam-
ination in a single instruction.

We add the SIMD feature into the Swift instruction set by
packing additional operands into unused parameter fields. For
instance, the “Direct addressing load, test if equal” instruction

uses only one 32-bit operand. In contrast, the SIMD ver-
sion of this instruction can carry up to six additional operands,
and the corresponding operation becomes “Direct addressing
load, and test if equal to any of through ”.

2) Swift Pass and Filter Program: A series of instructions
connected by logic “AND” form a pass. When a packet arrives,
the instructions of a pass are evaluated one by one. If all evalua-
tion results are “true,” the packet is accepted and copied to user
space. Otherwise, if any evaluation result is “false,” the packet
fails the current pass and will be tested by remaining passes or
dropped if it fails all passes. Passes are thus effectively indepen-
dent and are combined by logic “OR.”

We achieve the hierarchical execution optimization feature
by establishing hierarchical relationships among passes. When
a Swift filter is initially set, the passes it contains are created by
the application from scratch. In subsequent changes, if a new
pass is related to one of the existing passes, the application is
entitled to add the new pass by duplicating an existing pass and
modifying the copy, or “child” pass. Performing duplication, in-
stead of creating a pass afresh, has two benefits. First, the appli-
cation saves time in updating the criterion—only the difference
between the old and new control flows needs to be updated.
Second, the parent–child relationship is noted by the filtering
engine and is used to optimize filter execution.

When a pass is added by duplication, Swift makes a bit-exact
copy of the parent pass and then marks all the instructions of
the child pass as “copied,” a hint for the filtering engine that
the marked instruction is exactly the same as the corresponding
one in its parent pass. When an instruction in the child pass
is later modified, the associated “copied” mark is removed. To
evaluate a Swift filter, the filtering engine traverses the passes
according to their hierarchical relationships (if any) in a depth-
first manner. A parent pass is evaluated before its children. If
the parent pass succeeds, then, as for any pass, the filtering

1410 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

Fig. 4. Hierarchical pass relation diagram.

engine halts. Otherwise, Swift records those instructions that
succeeded. When evaluating child passes, Swift need not re-ex-
ecute any copied instruction that succeeded in the parent.

Fig. 4 illustrates an example of the pass relation in a Swift
filter. Pass 1 is created from scratch, while the other two passes
are added by duplicating pass 1. The instructions bearing the
“copied” mark have shaded background, so the filtering engine
may skip their evaluations.

D. Analysis

Before giving detailed analysis of Swift in terms of perfor-
mance and security, we first summarize the shared design prin-
ciples of Swift with other packet filters, especially BPF, as well
as its unique design features that distinguish Swift from other
packet filters. The shared features are marked with “ ,” and the
unique ones marked with “ .”

Runs as a kernel module, filtering packets in place.
Uses architecture-independent pseudomachine.

Utilizes CISC ISA with SIMD support.
Enables compile-free, in-place filter modification.
Ensures security with simplified computational model.

1) Performance: The performance superiority of Swift
mainly originates from two aspects: high filter execution effi-
ciency and low filter update latency.

Thanks to the capability of aggregating multiple simple op-
erations into one instruction, Swift programs have much fewer
instructions than their BPF counterpart. As a result, even though
its per-instruction interpretation overhead is slightly higher than
that of BPF, Swift achieves much lower interpretation overhead
of an entire filter program. While the filter engine size of Swift
(24 kB) is much larger than that of BPF (6 kB), our experimental
results show that the larger code size has insignificant impact on
performance. Even running Swift on the CPU with only 12 kB
L1 cache (“PC1” in our experiment setup), there is still no ob-
servable performance degradation indicating cache thrashing.

Swift’s superior dynamic filtering performance is mainly at-
tributed to its very low filter update latency. For a filtering pro-
gram with primitives and experiencing changes per up-
date, the three preprocessing phases in BPF—recompiling the

entire filter, copying the whole compiled filter code to the kernel,
and security checking—all take run-time. However, per-
forming the same filter update in Swift involves neither com-
pilation nor security checking. The only required operations,
mapping the changed primitives into instruction opcodes and
parameters, and copying the modified instructions into kernel,
take run-time. Because the filter update in Swift is only
related to the number of changes per update , not to the
complexity of the existing filter , its filter update latency
can be substantially lower than that of BPF, especially when
is large (i.e., long and complex filtering criteria).

Although using fixed-length instructions increases the
memory consumption of a Swift filtering program, the ad-
ditional space overhead does not lead to a scalability issue.
Each Swift instruction that corresponds to a filtering primitive
only occupies 32 bytes of memory space. Thus, even for filter
programs including thousands of filtering rules and hundreds
of thousands of filtering primitives, their Swift filter code only
consumes several megabytes of memory, which is insignificant
on modern computer systems.

2) Security: Filter code safety has always been a concern
in packet filter design. Since modern packet filters execute in
kernel space, without proper code safety checking, a faulty filter
program containing infinite loops, wild jumps, out-of-bound
array indexes, etc., could lead to unpredictable results. In
addition, a maliciously crafted filter program can bypass any
user-level access protection and can seriously undermine
system security.

Depending on the design model, different packet filters
have different mechanisms to enforce the security of the filter
programs. The FFPF filter languages allow memory allocation,
and hence, FFPF has compile-time checks to control resource
consumption and run-time checks to detect array boundary
violations. In contrast, BPF only needs to perform a security
check in the kernel just before the filter program is attached;
any program containing backward or out-of-bound jumps or
illegal instructions is rejected. However, Swift enforces security
in its design and eliminates the necessity for run-time security
checks. Swift trades off some of its computational power,
i.e., arbitrary data manipulation, for simpler computational
model. Because any Swift program is an acyclic deterministic
finite-state automaton (DFA), the interpreter is always in a
predetermined state, the execution of a finite-size filter program
is always bounded, and Swift requires no security check at all.

Two rationales justify this design tradeoff. First, the reduction
of computational power is harmless in the context of packet fil-
tering. A packet filter is a very specific system tool with a well-
defined set of operations. PathFinder [17] shows that all opera-
tions in packet filtering can be generalized as pattern matching.
The pcap filter language uses the special primitive “expr” to
support arbitrary data manipulation. However, this primitive is
rarely used in practice because its main usage is to specify un-
common filtering criteria that are not covered by regular prim-
itives. Second, BPF’s support for arbitrary data manipulation
comes with a high performance penalty. BPF does not differ-
entiate predefined and arbitrary data manipulation operations.
Instead, all data manipulations are broken down to multiple ele-
mentary instructions. As a result, a significant amount of time is

WU et al.: DESIGN AND IMPLEMENTATION OF FAST DYNAMIC PACKET FILTER 1411

wasted in interpretation, and sometimes BPF even takes a longer
time to interpret an instruction than to execute it.

Different from BPF, we apply the strategy of “optimize for
the common case and prepare for the worst” in the design of
Swift. Swift supports well-defined and commonly used data ma-
nipulations by incorporating each variant in a single instruction
and integrating their implementations into the filtering engine.
Since those operations are carried out by native binary code,
Swift achieves very high execution efficiency. Swift cannot per-
form data manipulations that are not defined in its instruction
set. Instead, the user applications need to carry out the custom
data manipulations by themselves. However, in case an unsup-
ported data manipulation is desperately needed (for example,
a new layer-2 or layer-3 protocol appears requiring different
data parsing operations), we can always add new instructions
to Swift.

IV. IMPLEMENTATION

We have implemented the Swift kernel engine and user-space
libraries in Linux 2.6. Currently, we provide implementations
for both i386 and x86_64 architectures, and we plan to port
Swift to other open-source UNIX variants such as FreeBSD in
the future.

A. Kernel Implementation

Swift coexists with the Linux kernel’s LSF. LSF is the
module equivalent to BPF in BSD UNIX and the default
packet filtering module for the widely used libpcap library.
Our implementation requires little modification to the existing
kernel code and is compatible with the existing packet-filtering
framework. Swift’s user-kernel communication mechanism
uses the system call. Swift filter programs are
attached to the same kernel data structure as LSF
filter programs, with a flag set to tell two kinds of programs
apart. Packets captured by Swift and LSF share the same
delivery path no matter which packet filter is being used.

B. Userland Libraries

The libpcap library provides a set of well-designed routines
for setting filter programs and processing packets, as well as
utility functions for handling devices and dumping captured
packets. Instead of hacking libpcap to incorporate Swift, we de-
veloped a set of complementary libraries. Applications based on
Swift can seamlessly use those libpcap functions that are unre-
lated to filter setting, but must invoke a separate mechanism to
communicate with the Swift filter engine for filter program in-
stallation and update.

As shown in Table II, the C library libswift provides a set of
function APIs for the convenient manipulation of Swift filter
programs. We also implement a C++ library ooswift, providing
object-oriented filter program control and manipulation and im-
proved debugging support. Table III shows a common filtering
criterion expressed in pcap primitives, in Swift using ooswift,
and in compiled LSF code. The table illustrates the clear logical
connection and easy transformation between the Swift filter pro-
gram and the pcap language primitives.

TABLE II
SELECTION OF libswift APIS

TABLE III
FILTER EXPRESSED BY pcap, SWIFT, AND LSF

C. Implementation Optimizations

In addition to the Swift architecture, we have employed sev-
eral implementation optimization techniques, which help Swift
to gain further performance improvement.

First, we introduce computational cache to reduce com-
putation redundancies. Swift does not provide any storage to
the filter program, and thus no information can be explicitly
exchanged between instructions. As a result, the execution
of instructions incurs computation redundancies, such as re-
peated calculation of protocol header lengths. Computational
cache provides an implicit channel to share information across
instructions. When protocol header parsing on a packet is
performed for the first time, the header length is stored in
the computational cache, and therefore future header-length
computations on the same packet can be saved by directly
retrieving the cached results.

Second, we integrate the SIMD indicator with the instruction
identifier. This optimization essentially unrolls evaluation loops

1412 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

for multiple operands into linear instructions. It avoids perfor-
mance penalties of using loops with small code segments. More-
over, it also eliminates the need to allocate and check a separate
SIMD indicator for each instruction, saving additional decode
time.

Finally, we make use of hardware stack in filter evaluation.
Because recursive function calls are impractical for in-kernel
code, Swift must evaluate hierarchical filter passes iteratively,
which requires simple local storage (a stack or queue). Using
high-level data structures, such as an indexed array, is too
slow in that every storage access involves many operations:
accessing, modifying, and storing the array index, loading
the array base address, and finally, dereferencing and loading
the desired element. Instead, we directly use the local stack
provided by the processor and avoid interfering accesses to
function local variables by instructing the C compiler to keep
the frame-pointer of the evaluation engine function.

V. EVALUATION

In this section, we evaluate the performance of Swift on both
dynamic and static filtering tasks and compare it to that of LSF
and C kernel filters. The C kernel filters (“Opt-C” for short in
the following) are hand-coded, compiled (using gcc “ ” op-
tion) C programs that provide some indication of possible per-
formance gains obtainable by noninterpreted binary code. Each
C kernel filter is coded for a specific filtering task. We use the
performance of Opt-C filters as an approximation to the perfor-
mance of FFPF filters. An FFPF filter written in FPL-3, which
is FFPF’s native language, is first transformed into a C program
and compiled into native code by gcc, and then loaded as a
kernel module for use. Since both FPL-3 filters and our Opt-C
filters run inside the kernel natively and only a single filter pro-
gram runs in each experiment, the performance difference be-
tween FFPF filters and Opt-C filters should be minimal.

Swift, LSF, and Opt-C filters share the same filtering frame-
work and only differ in filtering engine. Therefore, we use the
number of CPU cycles spent by the filtering engine as the mi-
crobenchmark metric. This metric is computed by taking the dif-
ference of the x86 Time-Stamp Counter (TSC) just before and
right after a specific filter operation. For dynamic filtering tasks,
the operation is filter update, while for static filtering tasks, the
operation is filter evaluation. In order to compare filter perfor-
mance across different platforms, we further convert CPU cy-
cles into clock time based on the corresponding machine’s pro-
cessor frequency.

To evaluate the filters in a realistic but controllable environ-
ment, we set up a test bed using a gigabits-per-second SMC
managed switch to connect four different machines. We use the
mirror function of the switch to redirect the traffic on the spec-
ified source port to the mirror port. The packet generator ma-
chine (PCS) connected to the source port replays traces, and one
of the other three machines (PC1–3) connected to the mirror
port captures the replayed traffic as a monitoring device. The
four machines (PCS and PC1–3) have different generations of
processors ranging from Pentium 4 x86 to the latest Xeon dual-
core EM64T. The configurations of these machines are listed in
Table IV.

TABLE IV
TEST BED MACHINE CONFIGURATIONS

A. Dynamic Filtering Performance

We use the task of capturing FTP passive-mode traffic, a typ-
ical dynamic filtering task, to measure the performances among
Swift, LSF, and Opt-C filters. We developed an application
called FTPCap to monitor FTP traffic and collect performance
statistics. Three variants that use Swift, LSF, or Opt-C are
called FTPCap-Swift, FTPCap-LSF, and FTPCap-Opt-C,
respectively.

1) Experimental Setup: In passive-mode FTP, the server port
of a control connection is fixed (usually 21), but the server ports
of data connections are dynamically assigned. FTPCap-LSF
initially employs “(ip and tcp port ftp)” to capture FTP control
packets. When a control packet containing the port number
for a new data connection is captured, the server IP address
and port number for the new connection will be recorded, and
FTPCap-LSF will generate a new criterion similar to “(ip and
tcp port ftp) or (ip x1 and (tcp port y1 or tcp port y2)) or (ip
x2 and (tcp port y3 or tcp port y4)),” in which “x1” and “x2”
refer to the server IP addresses and “ ” refer to the port
numbers. The LSF optimizer performs better when the port
numbers of the same server are grouped together. Correspond-
ingly, FTPCap-Swift initializes the first pass with the criterion
“(ip and tcp port ftp)” to capture FTP control packets. When a
data connection setup event is detected, FTPCap-Swift either
simply includes the new port number in the corresponding
pass if the server is already observed, or adds a pass using
hierarchical execution optimization otherwise. FTPCap-Opt-C,
unlike the previous two, has no code for filter setting and
updating because the work is already taken by the Opt-C filter.
It simply turns on/off the Opt-C filter.

The FTP traffic trace is obtained in a LAN environment. We
set up 10 FTP servers with different IP addresses. For each
server, we make 20 concurrent passive-mode file transfer con-
nections, which are initiated one by one. In other words, at max-
imum there are 200 concurrent passive FTP data connections.
This trace lasts 45 s with 3948 packets per second (pps) on av-
erage. In addition, we emulate the scenario of monitoring FTP
packets under high-rate background traffic by mixing the cap-
tured FTP traffic with a constant high-rate (500 Kpps) non-FTP
background traffic. The background traffic is generated by using

[29] to play back a large trace file, which is captured
at the edge gateway of our campus network.

Besides using filter update latency as the microbenchmark
performance metric, we also use the number of missing packets
per data connection as the macrobenchmark performance
metric. The missing packets refer to those packets that are not
captured by FTPCap at the beginning of a newly established

WU et al.: DESIGN AND IMPLEMENTATION OF FAST DYNAMIC PACKET FILTER 1413

Fig. 5. LSF filter update latency.

Fig. 6. Swift filter update latency.

data connection. The packet miss is caused by the filter update
latency being larger than the FTP client acknowledgment
delay—the interval between the time when the client receives
the port assignment message and the time when the client starts
to communicate with the server on that port. The metric is
derived by counting the number of the transmitted packets (in-
cluding TCP control packets) prior to the first packet captured
by FTPCap, based on the offline analysis of the replayed trace.

2) Experimental Results: We run FTPCap-LSF and
FTPCap-Swift 20 times each on PC1–3, 10 times with the
FTP traffic trace replayed and the other 10 times with the mixed
traffic trace replayed. We take the median of 10 experimental
results as the final result. FTPCap-Opt-C is also tested. Because
there is no filter update at user space, its filter update latency is
zero, and no packet is missed by FTPCap-Opt-C for either FTP
traffic or mixed traffic. Therefore, we focus on the performance
comparison between LSF and Swift.

Figs. 5 and 6 show how filter update latency changes with
an increase in concurrent data connections for LSF and Swift,
respectively. The thick and thin curves show the filter update
latencies for the traces with no background traffic and with
500-Kpps background traffic, respectively. The most signifi-
cant difference between Figs. 5 and 6 lies in the scale of the

-axis. While the filter update latency for LSF is on the order
of milliseconds (ms), the filter update latency for Swift is
only on the order of microseconds s . By eliminating filter
compilation and security checking, Swift gains at least three
orders of magnitude speedup against LSF in filter update. Over
99% of LSF’s latency is caused by user-level filter recompi-
lation, but the remaining user-kernel copy and security check
latency is still much larger than Swift’s entire update latency.
For example, the user-kernel copy and security check latency
on PC3 grows from 10 to 20 s in the experiment. FTPCap
running on PC2 does not capture all control packets that carry
dynamic port information under mixed traffic, which results

in incomplete thin curves in “PC2-LSF” and “PC2-Swift.”
The missing critical control packets are mainly due to PC2’s
insufficient processing capacity.

As shown in Fig. 5, both concurrent connections and back-
ground traffic affect the filter update latency of LSF. When the
number of concurrent connections increases, the filtering crite-
rion expressed in pcap language becomes longer, and the com-
pilation procedure and security checking consume more CPU
cycles. In contrast, the filter update latency of Swift is basi-
cally insusceptible to changes in concurrent connections and
background traffic: Although all Swift curves in Fig. 6 fluc-
tuate slightly, the thin curves overlap with the thick curves to a
great extent. This is because Swift filter updates are incremental
and adding filter instructions for a new connection takes almost
constant time. The large spikes of Swift curves, which occur at
the beginning and around the addition of the 120th connection,
are attributed to the relatively large overheads caused by pass
duplication.

Figs. 7 and 8 illustrate the average number of missing packets
per data connection by LSF and Swift, respectively. The -axis
scales are again significantly different. The average numbers of
missing packets per connection for LSF range from 30 to 160,
while those for Swift are only one or two at maximum. Without
background traffic, Swift does not miss any packet no matter
how many concurrent connections exist. With background
traffic, the average levels of the “500 Kpps” curves slightly
lift after around 120 concurrent connections, which coincides
with the occurrence of the second group of large spikes in
Fig. 6. The lift of fluctuation level may be attributed to the
added passes and related pass duplication. The addition of
more passes extends the filtering path for non-FTP packets and
results in more CPU time spent on non-FTP traffic filtering.
Even so, Swift only misses one or two packets per connection.

There are two additional issues associated with the LSF
curves in Fig. 7. First, the ceiling phenomena—both “No bg”

1414 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

Fig. 7. Missing packets per data connection by LSF.

Fig. 8. Missing packets per data connection by Swift.

TABLE V
STATIC FILTERS IN pcap LANGUAGE AND THEIR INSTRUCTION COUNTS IN LSF AND SWIFT

and “500 Kpps” curves bounded by 160—are caused by the
rate-limiting of the FTP servers. In the initial period of a data
connection, the servers first transmit about 160 packets in tens
of milliseconds, and then stay idle for the next several hundred
milliseconds (not all shown in figure) to limit downloading
rate. Such “bounding” behavior occurs for a wide range of
rate-limit settings (e.g., from 100 kB/s to 2 MB/s). Since an
LSF filter update latency is always shorter than the duration of
the idle phase, the number of missing packets in each update is
bounded. Second, the round-trip time (RTT) of the FTP trace
is small, varying from tens of microseconds to hundreds of
microseconds, as the trace is collected in a LAN environment.
A larger RTT would cause fewer packets to be transmitted
during the time window of a filter update, thus reducing the
impact of filter updates on packet missing. Compared to LSF,
Swift is almost insensitive to the variation of RTT, and hence
can support applications that require high-fidelity data capture
in diverse network environments.

B. Static Filtering Performance

We use six sets of filters with increasing complexity, as shown
in Table V, for static filtering performance evaluation. The in-
struction numbers of these filters in LSF and Swift are also listed

for comparison. The Opt-C filter programs show performance
gains that could potentially be achieved by improving LSF and
Swift to native code speeds.

The trace for static filtering is captured at the gateway of our
campus network. It contains over 14 million packets (75 bytes
snap length), and its size is around 1.1 GB. We play back the
trace file at 250 Kpps rate using tcpreplay. Assuming an average
of 500 bytes per packet, the playback rate represents a fully uti-
lized 1-Gb/s link bandwidth. We record the average time spent in
accepting and rejecting packets separately and select the larger
value of the two as the filter performance data. We choose the
larger value, instead of the smaller one or the average, because
the worse-case runtime is much less affected by network traffic
conditions, such as traffic speed and composition.

Fig. 9 illustrates the per-packet processing time of LSF, Swift,
and Opt-C on all machines for each filter. In addition, Table VI
details the breakdown of the per-packet processing time for both
LSF and Swift on PC3. The “Exec.” column shows the av-
erage execution time per instruction and the average number
of instructions executed per packet, in the format of (time/in-
struction) (instruction count). The “Aux.” column shows the
auxiliary processing time spent on filter engine setup and shut-
down operations, such as call/ret instructions and local stack
maintenance.

WU et al.: DESIGN AND IMPLEMENTATION OF FAST DYNAMIC PACKET FILTER 1415

Fig. 9. Per-packet processing time of each static filter (nanoseconds).

TABLE VI
PROCESSING TIME BREAKDOWN FOR LSF AND SWIFT

Filters 1 and 2 are the simplest criteria designed to show the
minimum overhead induced by the filtering engine. The corre-
sponding results in Fig. 9 demonstrate that Swift and LSF have
approximately the same processing speed with these two simple
filters. Both Swift and LSF run slower than Opt-C. Table VI fur-
ther sheds some light on the performances of both LSF and Swift
filter engines. For filter 1, the LSF filter program only consists
of a simple “ret” instruction, and thus the 5.2 ns per-instruc-
tion execution time is mainly determined by LSF’s interpreta-
tion overhead. In contrast, the Swift filter engine is designed
to accept all packets by default. Therefore, the Swift filter pro-
gram does not contain any code, and its processing time is spent
entirely on the filter engine setup and shutdown. By adding a
“nop” instruction for Swift to execute before accepting a packet,
we estimate Swift’s interpretation overhead to be about 8.2 ns.
For filter 2, although the per-instruction execution time of LSF
is 29% shorter than that of Swift, its overall execution time is
longer than that of Swift. This is because the instruction count
ratio between LSF and Swift is 3:1.

Filters 3 and 4 are light-load criteria designed to demonstrate
filtering engine performance on basic packet classification.
The corresponding results in Fig. 9 indicate that Swift has a
moderate performance advantage over LSF on all machines.

For filter 3, compared to Opt-C, LSF takes 232%–292% more
time to process a packet, with an average slowdown of 267%;
Swift takes 122%–207% more time to process a packet, with
an average slowdown of 161%. The average speedup of Swift
over LSF is 143%. For filter 4, compared to Opt-C, LSF takes
84%–187% more time to process a packet, with an average
slowdown of 148%; Swift takes 65%–95% more time to
process a packet, with an average slowdown of 80% times. The
average speedup of Swift over LSF is 139%. Similar to the
cases of filters 1 and 2, Table VI shows that for filters 3 and 4,
the per-instruction execution time of Swift is about 50% longer
than that of LSF, but the much larger instruction count makes
LSF slower than Swift in packet processing.

Filter 5 is a moderate-load criterion designed to test the fil-
tering engine’s capability of handling highly specific operation.
The corresponding results in Fig. 9 show that Swift outper-
forms LSF by a significant amount on all machines. Compared
to Opt-C, LSF takes 368%–638% more time to process a packet,
with an average slowdown of 468%; Swift takes 70%–260%
more time to process a packet, with an average slowdown of
139%. The average speedup of Swift over LSF is 250%. The sig-
nificant speedup of Swift is due to its architectural advantages
and specifically SIMD instructions. The ability to pack many
operands (12 for TCP/DUP ports) in one instruction and batch
the execution of comparison operations within a single filter en-
gine “cycle” enables many-fold reduction at the cost of instruc-
tion interpretation and improves the performance of Swift close
to that of Opt-C. As shown in Table VI, compared to previous
filters, LSF maintains its per-instruction execution time, but ex-
ecutes much more instructions. By contrast, Swift maintains its
instruction count and packs more operations in each instruction.

Filter 6 is a heavy-load, “real-life” criterion obtained from the
campus network administrator. This filter is used by an appli-
cation to detect suspicious IRC traffic. The filter is sufficiently
complex for Swift to utilize the optimizations discussed earlier,

1416 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

TABLE VII
OPTIMIZATION EFFECTS OF SWIFT FILTER 5

namely SIMD instructions and hierarchical execution optimiza-
tion. The corresponding results in Fig. 9 show even higher per-
formance increase of Swift against LSF. Compared to Opt-C,
LSF takes 783%–1294% more time to process a packet, with
an average slowdown of 1009%; Swift takes 179%–521% more
time to process a packet, with an average slowdown of 318%.
The average speedup of Swift over LSF is 279%. According
to Table VI, even though the per-instruction execution time of
LSF is less than one-third of Swift, the instruction count ratio
between LSF and Swift is 10:1.

For all these filters, the auxiliary processing time for both LSF
and Swift is fairly steady, as shown in Table VI. Although the
auxiliary cost of Swift is about 8–9 ns more than that of LSF,
the extra cost is insignificant as the filter becomes more complex
and requires more time to execute.

We further measure the average execution time of Swift
filter 5 with no SIMD extension (“Less-optimized”) and
with neither SIMD extension nor hierarchical execution
(“Unoptimized”) to provide more insights into the effect of
Swift optimizations on performance improvement. The corre-
sponding results are listed in Table VII. The removal of SIMD
instructions exerts a great impact on the performance of the
Swift filter, resulting in a slowdown of 156%. The compar-
atively small increase of execution time after the removal of
hierarchical execution indicates that the hierarchical execution
has a minor effect on the performance of the Swift filter. For
Swift filter 6, due to filter program organization, we remove
hierarchical execution optimization for the “Less-optimized”
experiment and remove both hierarchical execution and SIMD
extension for the “Unoptimized” experiment. Again, the impact
of SIMD extension is far greater than that of hierarchical
execution on the average execution time.

Overall, we find that: 1) the SIMD extension plays a very im-
portant role in speeding up Swift filter execution; and 2) the
hierarchical execution also helps the speedup, but its effect is
much smaller than that of SIMD extension, especially with a
large instruction count. Without the SIMD extension and hier-
archical execution, Swift can only perform comparably to op-
timized LSF for static filter tasks. These results are consistent
with our observation from Fig. 9 and Table VI: The speedup of
Swift is mainly attributed to its use of much fewer instructions
than LSF.

Fig. 10 presents a comprehensive picture of filter execution
time for LSF, Swift, and Opt-C filters among all machines
categorized by six filtering criteria. It provides a good overview
of the static filtering performance for cross comparison. When
the filtering criteria are simple, LSF, Swift and Opt-C have
nearly indistinguishable performance. As the criteria become
more complex, the differences of filter execution time among
the three filtering engines grow. Although both Swift and LSF
run slower than Opt-C, the filter execution time of Swift grows
at a much slower rate than that of LSF, and thus Swift achieves
much closer performance to Opt-C than LSF.

Fig. 10. Per-packet processing time on all machines.

VI. HARDWARE ENHANCED IMPLEMENTATION

Enhanced instructions such as SIMD instructions have been
available on modern CPUs. Among those instructions, the
family of SSE instruction sets on the x86 architecture is most
notable and widely supported. However, these hardware SIMD
instructions have not been leveraged by previous packet filters
or network traffic monitoring programs. Thanks to the special
instruction design, it is easy and straightforward to map Swift’s
SIMD instructions to hardware SIMD instructions. Therefore,
Swift is capable of harnessing the parallel processing power
provided by modern processors to accelerate packet filtering.

A. SSE Conversion

The main feature as well as the key to the speedup of SIMD
instructions is their ability to process multiple data fields in par-
allel. Most of the Swift instructions match well with this feature,
as described in Section III-C. Consequently, the conversion of
Swift execution engine to using SSE instructions is not only nat-
ural, but also transparent. In other words, the binary representa-
tions of all Swift instructions remain the same for non-SSE and
SSE implementations of the execution engine.

We use two typical Swift instructions, and , as
the examples to illustrate the implementation conversion. The

instruction compares a 32-bit integer against four 32-bit
comparands. The execution of the non-SSE implementation,
shown in Fig. 11(a), involves sequential comparisons of the data
to each comparand. Thus, four comparisons are made in the
worst case. In contrast, for the execution of the SSE implemen-
tation, shown in Fig. 11(b), four copies of the data are first pre-
pared in a single XMM register, and then only one comparison is
performed. The instruction examines if a 16-bit integer
is within the four given ranges. Its executions of the non-SSE
and SSE implementations are shown in Fig. 12(a) and (b), re-
spectively. The non-SSE implementation requires eight sequen-
tial comparisons in the worst case, while the SSE implementa-
tion needs only one subtract-with-saturation operation and one
comparison operation.

B. Implementation Detail

Our enhanced implementation of the Swift filtering engine
utilizes SSE instructions to interpret most of Swift instruc-
tions except for layer header length calculation, which cannot
be converted to any currently available SSE instructions.

WU et al.: DESIGN AND IMPLEMENTATION OF FAST DYNAMIC PACKET FILTER 1417

Fig. 11. Illustrations of two �� � implementations. (a) Non-SSE. (b) SSE.

Fig. 12. Illustrations of two ���� � implementations. (a) Non-SSE. (b) SSE.

Table VIII lists the collection of all SSE instructions used in
our implementation.

Theoretically, the use of SSE instructions can accelerate filter
execution. The speedup, however, does not come without cost.
The execution of SSE instructions also incurs overhead, due
mainly to the use of complex operations and the involvement of
additional processor hardware such as registers. Therefore, the

TABLE VIII
LIST OF SSE INSTRUCTIONS USED IN SWIFT

TABLE IX
INSTRUCTION EXECUTION TIME (NANOSECONDS)

performance of the SSE implementation on simple or nonparal-
leled operations might not be as good as that of the non-SSE im-
plementation. To overcome this limitation, our enhanced Swift
engine incorporates both SSE and non-SSE implementations,
and allows a user application to mix the use of both implemen-
tations to create “hybrid” filters that can take full advantage of
Swift. This is achieved by utilizing a reserved bit in the Swift
binary instruction header as the selector, thanks to the binary
compatibility between SSE and non-SSE implementations.

C. Performance Evaluation

We first measure the performance of individual instructions
with SSE enhancement. Table IX presents the execution times
of the two example instructions with different number of
operands. From this table, we can observe that, with one or
two operands, non-SSE implementations are slightly faster
than SSE implementations. However, the execution time of a
non-SSE implementation tends to increase linearly with the
number of operands, while that of the corresponding SSE im-
plementation tends to remain constant when multiple operands
can be handled in parallel. Consequently, with a large number
of comparands, the performance of SSE is evidently superior
than that of non-SSE, as shown in Fig. 13.

We then measure the “composite” speedup of the SSE imple-
mentation by recording the execution time of each static filter
used in Section V.1 Filters 1 and 2 are excluded due to their
simplicity. The results of filters 4–6 are presented in Fig. 14,
which illustrates the comparison on the execution time of each
filter between the SSE and the non-SSE implementations. Fil-
ters 3 and 4 consist of all nonparalleled Swift instructions, and
their execution times in SSE are 10.0% and 15.6% slower than
those in non-SSE, respectively, due to the overhead of SSE.

1The measurements are performed on a more recently purchased machine
than PC3. The configurations of the new machine are: dual Xeon 5400 proces-
sors with 8-MB L2 cache, integrated memory controller (no FSB), and 6-GB
DDR3 SDRAM.

1418 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

Fig. 13. Time of execution versus number of comparands. (a) EQ instructions. (b) SRNG instructions.

Fig. 14. Execution times of filters 3–5.

However, with increased filter complexity, more instructions
are parallelizable in filters 5 and 6. Thus, SSE runs only 2.8%
slower than non-SSE in filter 5, while SSE runs 19.3% faster
than non-SSE in filter 6. To assess the maximal potential of the
enhanced Swift engine, we create “hybrid” versions of filters 5
and 6 by employing both SSE and non-SSE implementations.
In particular, we identify those Swift instructions that execute
slower with SSE implementation in filters 5 and 6 and revert
them to non-SSE implementation. The hybrid filters 5 and 6,
presented as “Selective SSE” in Fig. 14, run 0.6% and 25.6%
faster than their non-SSE counterparts, respectively.

D. Future Extensibility

Swift can be further enhanced with the upcoming addition
of newer SSE instructions. For example, the “fused multiply-
add” instruction can be applied to speed up packet layer header
calculation; various integer arithmetic and logical instructions
can be utilized to provide Swift programs with new features such
as high performance checksum verification and hash generation,
etc.

VII. CONCLUSION

This paper presents the design and implementation of the
Swift packet filter. Swift provides an elegant, fast, and efficient
packet filtering technique to handle the challenge of high-speed
network monitoring with dynamic filter updates. The key fea-
tures of Swift lie in its low filter update latency and high ex-
ecution efficiency. Swift attains these performance advantages
by embracing several major design innovations: 1) a special-
ized CISC instruction set increases filter execution efficiency

and eliminates filter recompilation, resulting in significantly re-
duced filter update latency; 2) a simple computational model
removes the necessity of security checking and improves filter
update latency; and 3) SIMD extensions further boost filter ex-
ecution efficiency.

Our extensive experiments have validated Swift’s efficacy
and demonstrated the superiority of Swift against the de facto
packet filter, BPF. For dynamic filtering tasks, the filter update
latency of Swift is three orders of magnitude lower than that of
BPF, and on each filter update, the number of packets missed by
Swift is about two orders of magnitude less than that by BPF.
For static filtering tasks, Swift runs as fast as BPF on simple fil-
tering criteria, but is up to three times as fast as BPF on complex
filtering criteria. Swift also performs much closer to optimized
C filters than BPF.

The parallel processing nature of Swift instruction enables
further performance improvement by leveraging the power of
hardware SIMD instructions. We have studied the use of SSE
instructions for accelerating filter execution. We have developed
an enhanced Swift filtering engine and shown that it can signif-
icantly improve the performance of complex filters.

REFERENCES

[1] S. McCanne and V. Jacobson, “The BSD packet filter: A new archi-
tecture for user-level packet capture,” in Proc. Winter USENIX Tech.
Conf., 1993, pp. 259–269.

[2] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer,
“Building a time machine for efficient recording and retrieval of
high-volume network traffic,” in Proc. ACM/USENIX IMC, 2005, pp.
267–272.

[3] S. Saroiu, S. D. Gribble, and H. M. Levy, “Measurement and analysis
of spyware in a university environment,” in Proc. USENIX NSDI, 2004,
pp. 141–153.

[4] C. Partridge, A. C. Snoeren, W. T. Strayer, B. Schwartz, M. Condell,
and I. Castineyra, “FIRE: Flexible intra-AS routing environment,” in
Proc. ACM SIGCOMM, 2000, pp. 191–203.

[5] V. Paxson, “Bro: A system for detecting network intruders in real-
time,” Comput. Netw., vol. 31, no. 23–24, pp. 2435–2463, Dec. 1999.

[6] H. Bos, W. de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis,
“FFPF: Fairly fast packet filters,” in Proc. USENIX OSDI, 2004, pp.
347–363.

[7] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational
experiences with high-volume network intrusion detection,” in Proc.
ACM CCS, 2004, pp. 2–11.

[8] S. Ioannidis, K. G. Anagnostakis, J. Ioannidis, and A. D. Keromytis,
“xPF: Packet filtering for low-cost network monitoring,” in Proc. IEEE
HPSR, 2002, pp. 121–126.

[9] V. Jacobson, C. Leres, and S. McCanne, “Tcpdump(1),” Unix Manual
Page, 1990.

WU et al.: DESIGN AND IMPLEMENTATION OF FAST DYNAMIC PACKET FILTER 1419

[10] J. M. Gonzalez, V. Paxson, and N. Weaver, “Shunting: A hardware/
software architecture for flexible, high-performance network intrusion
prevention,” in Proc. ACM CCS, 2007, pp. 139–149.

[11] J. C. Mogul, R. F. Rashid, and M. J. Accetta, “The packet filter: An
efficient mechanism for user-level network code,” in Proc. 11th ACM
SOSP, 1987, pp. 39–51.

[12] G. Varghese, Network Algorithmics—An Interdisciplinary Approach to
Designing Fast Networked Devices. San Mateo, CA: Morgan Kauf-
mann, 2005.

[13] S. McCanne, C. Leres, and V. Jacobson, “Libpcap,” Lawrence
Berkeley Laboratory, Berkeley, CA, Feb. 2011 [Online]. Available:
http://www.tcpdump.org

[14] A. Begel, S. McCanne, and S. L. Graham, “BPF+: Exploiting global
data-flow optimization in a generalized packet filter architecture,” in
Proc. ACM SIGCOMM, 1999, pp. 123–134.

[15] J. van der Merwe, R. Caceres, Y. hua Chu, and C. Sreenan, “mm-
dump—A tool for monitoring Internet multimedia traffic,” Comput.
Commun. Rev., vol. 30, no. 5, pp. 48–59, 2000.

[16] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B. Moss, “Efficient
packet demultiplexing for multiple endpoints and large messages,” in
Proc. Winter USENIX Tech. Conf., 1994, pp. 153–165.

[17] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar,
“Pathfinder: A pattern-based packet classifier,” in Proc. USENIX OSDI,
1994, pp. 115–123.

[18] D. R. Engler and M. F. Kaashoek, “DPF: Fast, flexible message demul-
tiplexing using dynamic code generation,” in Proc. ACM SIGCOMM,
1996, pp. 53–59.

[19] WAND, “The DAG project,” Univ. Waikato, Hamilton, NZ, Feb. 2011
[Online]. Available: http://dag.cs.waikato.ac.nz/

[20] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt, “Architecture of
a network monitor,” in Proc. IEEE PAM, 2003, pp. 77–86.

[21] J. Coppens, E. Markatos, J. Novotny, M. Polychronakis, V. Smot-
lacha, and S. Ubik, “Scampi—A scalable monitoring platform for the
Internet,” in Proc. 2nd Int. Workshop Inter-Domain Perform. Simul.,
2004, pp. 121–127.

[22] F. Pong and N.-F. Tzeng, “Hashing round-down prefixes for rapid
packet classification,” in Proc. USENIX Annu. Tech. Conf., San Diego,
CA, 2009, pp. 71–85.

[23] L. X. Yxuan Qi and B. Yang, “Packet classification algorithms: From
theory to practice,” in Proc. IEEE INFOCOM, 2009, pp. 648–656.

[24] F. Yu, R. H. Katz, and T. V. Lakshman, “Efficient multimatch packet
classification and lookup with TCAM,” IEEE Micro, vol. 25, no. 1, pp.
50–59, Jan.–Feb. 2005.

[25] D. Pao, Y. K. Li, and P. Zhou, “Efficient packet classification using
TCAMs,” Comput. Netw., vol. 50, pp. 3523–3535, 2006.

[26] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in Proc. ACM/IEEE ANCS, 2006, pp. 93–102.

[27] S. Kumar and P. Crowley, “Algorithms to accelerate multiple regular
expressions matching for deep packet inspection,” in Proc. ACM SIG-
COMM, 2006, pp. 339–350.

[28] T. Hruby, K. van Reeuwijk, and H. Bos, “Ruler: High-speed packet
matching and rewriting on NPUs,” in Proc. ACM/IEEE ANCS, 2007,
pp. 1–10.

[29] A. Turner, “Tcpreplay,” Feb. 2011 [Online]. Available: http://tcpreplay.
synfin.net/trac/

Zhenyu Wu received the M.Sc. degree in computer
science from the College of William and Mary,
Williamsburg, VA, in 2005, and is currently pursuing
the Ph.D. degree in computer science at the College
of William and Mary.

His current research area focuses on data-center
resource management and network optimization.
His research interest also lies in system and network
security, including but not limited to malware anal-
ysis, packet filters, and Internet chat and online game
security.

Mengjun Xie (SM’08–M’10) received the Ph.D. de-
gree in computer science from the College of William
and Mary, Williamsburg, VA, in 2009.

He is an Assistant Professor of computer science
with the University of Arkansas at Little Rock. His
research interests include network security, infor-
mation security, network systems, and operating
systems.

Haining Wang (S’97–M’03–SM’09) received the
Ph.D. degree in computer science and engineering
from the University of Michigan, Ann Arbor, in
2003.

He is an Associate Professor of computer science
with the College of William and Mary, Williams-
burg, VA. His research interests lie in the areas
of networking systems, security, and distributed
computing.

